Menu Close

if-a-a-b-b-a-b-is-it-true-if-it-is-true-then-prove-it-




Question Number 205849 by Davidtim last updated on 31/Mar/24
if a^a =b^b   ; a=b  is it true?  if it is true then prove it.
ifaa=bb;a=bisittrue?ifitistruethenproveit.
Commented by mr W last updated on 31/Mar/24
not true for 0<a, b<1.  example:  a, b=((ln 0.8)/(W(ln 0.8)))≈ { ((0.094649710865)),((0.739533650011)) :}  0.094649710865^(0.094649710865)   =0.739533650011^(0.739533650011)   =0.8
nottruefor0<a,b<1.example:a,b=ln0.8W(ln0.8){0.0946497108650.7395336500110.0946497108650.094649710865=0.7395336500110.739533650011=0.8
Commented by Davidtim last updated on 01/Apr/24
please check the above exp.
pleasechecktheaboveexp.
Commented by Davidtim last updated on 01/Apr/24
Commented by mr W last updated on 01/Apr/24
if ((x/3))^(x/3) =3^3  ⇒(x/3)=3 ⇒x=9  this is true, since 3^3 >1.    but  if ((x/3))^(x/3) =(0.8)^(0.8)  ⇒(x/3)=0.8 ⇒x=2.4  this is not very true! since 1/(e)^(1/e) <0.8^(0.8) <1.   the correct solution is:  ((x/3))^(x/3) =(0.8)^(0.8)    ⇒(x/3)=((0.8 ln 0.8)/(W(0.8 ln 0.8)))  ⇒x=((2.4 ln 0.8)/(W(0.8 ln 0.8)))= { ((≈((2.4 ln 0.8)/(−2.72587187))=0.196467)),((≈((2.4 ln 0.8)/(−0.22314355))=2.4)) :}
if(x3)x3=33x3=3x=9thisistrue,since33>1.butif(x3)x3=(0.8)0.8x3=0.8x=2.4thisisnotverytrue!since1/ee<0.80.8<1.thecorrectsolutionis:(x3)x3=(0.8)0.8x3=0.8ln0.8W(0.8ln0.8)x=2.4ln0.8W(0.8ln0.8)={2.4ln0.82.72587187=0.1964672.4ln0.80.22314355=2.4
Commented by mr W last updated on 01/Apr/24
Commented by mr W last updated on 01/Apr/24
if x^x ≥1 ⇒there is only one solution for x.  if (1/( (e)^(1/e) ))<x^x <1 ⇒there are two solutions for x.  if x^x =(1/( (e)^(1/e) )) ⇒there is only one solution for x.  if x^x <(1/( (e)^(1/e) )) ⇒there is no solution for x.
ifxx1thereisonlyonesolutionforx.if1ee<xx<1therearetwosolutionsforx.ifxx=1eethereisonlyonesolutionforx.ifxx<1eethereisnosolutionforx.
Commented by Davidtim last updated on 01/Apr/24
thanks you are an exceptional of   science.  would you mind to prove the all of   three forms?
thanksyouareanexceptionalofscience.wouldyoumindtoprovetheallofthreeforms?
Commented by mr W last updated on 01/Apr/24
y=x^x =e^(xln x) >0  y′=e^(xln x) (ln x+1)=x^x (ln x+1)  y′=0: ln x+1=0 ⇒x=(1/e)  that means:  if x>(1/e),y′>0 ⇒y=x^x  is strictly increasing  if 0<x<(1/e),y′<0 ⇒y=x^x  is strictly decreasing  at x=(1/e), y_(min) =(1/( (e)^(1/e) ))
y=xx=exlnx>0y=exlnx(lnx+1)=xx(lnx+1)y=0:lnx+1=0x=1ethatmeans:ifx>1e,y>0y=xxisstrictlyincreasingif0<x<1e,y<0y=xxisstrictlydecreasingatx=1e,ymin=1ee

Leave a Reply

Your email address will not be published. Required fields are marked *