Question Number 205849 by Davidtim last updated on 31/Mar/24
$${if}\:{a}^{{a}} ={b}^{{b}} \:\:;\:{a}={b}\:\:{is}\:{it}\:{true}? \\ $$$${if}\:{it}\:{is}\:{true}\:{then}\:{prove}\:{it}. \\ $$
Commented by mr W last updated on 31/Mar/24
$${not}\:{true}\:{for}\:\mathrm{0}<{a},\:{b}<\mathrm{1}. \\ $$$${example}: \\ $$$${a},\:{b}=\frac{\mathrm{ln}\:\mathrm{0}.\mathrm{8}}{{W}\left(\mathrm{ln}\:\mathrm{0}.\mathrm{8}\right)}\approx\begin{cases}{\mathrm{0}.\mathrm{094649710865}}\\{\mathrm{0}.\mathrm{739533650011}}\end{cases} \\ $$$$\mathrm{0}.\mathrm{094649710865}^{\mathrm{0}.\mathrm{094649710865}} \\ $$$$=\mathrm{0}.\mathrm{739533650011}^{\mathrm{0}.\mathrm{739533650011}} \\ $$$$=\mathrm{0}.\mathrm{8} \\ $$
Commented by Davidtim last updated on 01/Apr/24
$${please}\:{check}\:{the}\:{above}\:{exp}. \\ $$
Commented by Davidtim last updated on 01/Apr/24
Commented by mr W last updated on 01/Apr/24
$${if}\:\left(\frac{{x}}{\mathrm{3}}\right)^{\frac{{x}}{\mathrm{3}}} =\mathrm{3}^{\mathrm{3}} \:\Rightarrow\frac{{x}}{\mathrm{3}}=\mathrm{3}\:\Rightarrow{x}=\mathrm{9} \\ $$$${this}\:{is}\:{true},\:{since}\:\mathrm{3}^{\mathrm{3}} >\mathrm{1}. \\ $$$$ \\ $$$${but} \\ $$$${if}\:\left(\frac{{x}}{\mathrm{3}}\right)^{\frac{{x}}{\mathrm{3}}} =\left(\mathrm{0}.\mathrm{8}\right)^{\mathrm{0}.\mathrm{8}} \:\Rightarrow\frac{{x}}{\mathrm{3}}=\mathrm{0}.\mathrm{8}\:\Rightarrow{x}=\mathrm{2}.\mathrm{4} \\ $$$${this}\:{is}\:{not}\:{very}\:{true}!\:{since}\:\mathrm{1}/\sqrt[{{e}}]{{e}}<\mathrm{0}.\mathrm{8}^{\mathrm{0}.\mathrm{8}} <\mathrm{1}.\: \\ $$$${the}\:{correct}\:{solution}\:{is}: \\ $$$$\left(\frac{{x}}{\mathrm{3}}\right)^{\frac{{x}}{\mathrm{3}}} =\left(\mathrm{0}.\mathrm{8}\right)^{\mathrm{0}.\mathrm{8}} \: \\ $$$$\Rightarrow\frac{{x}}{\mathrm{3}}=\frac{\mathrm{0}.\mathrm{8}\:\mathrm{ln}\:\mathrm{0}.\mathrm{8}}{{W}\left(\mathrm{0}.\mathrm{8}\:\mathrm{ln}\:\mathrm{0}.\mathrm{8}\right)} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}.\mathrm{4}\:\mathrm{ln}\:\mathrm{0}.\mathrm{8}}{{W}\left(\mathrm{0}.\mathrm{8}\:\mathrm{ln}\:\mathrm{0}.\mathrm{8}\right)}=\begin{cases}{\approx\frac{\mathrm{2}.\mathrm{4}\:\mathrm{ln}\:\mathrm{0}.\mathrm{8}}{−\mathrm{2}.\mathrm{72587187}}=\mathrm{0}.\mathrm{196467}}\\{\approx\frac{\mathrm{2}.\mathrm{4}\:\mathrm{ln}\:\mathrm{0}.\mathrm{8}}{−\mathrm{0}.\mathrm{22314355}}=\mathrm{2}.\mathrm{4}}\end{cases} \\ $$
Commented by mr W last updated on 01/Apr/24
Commented by mr W last updated on 01/Apr/24
$${if}\:{x}^{{x}} \geqslant\mathrm{1}\:\Rightarrow{there}\:{is}\:{only}\:{one}\:{solution}\:{for}\:{x}. \\ $$$${if}\:\frac{\mathrm{1}}{\:\sqrt[{{e}}]{{e}}}<{x}^{{x}} <\mathrm{1}\:\Rightarrow{there}\:{are}\:{two}\:{solutions}\:{for}\:{x}. \\ $$$${if}\:{x}^{{x}} =\frac{\mathrm{1}}{\:\sqrt[{{e}}]{{e}}}\:\Rightarrow{there}\:{is}\:{only}\:{one}\:{solution}\:{for}\:{x}. \\ $$$${if}\:{x}^{{x}} <\frac{\mathrm{1}}{\:\sqrt[{{e}}]{{e}}}\:\Rightarrow{there}\:{is}\:{no}\:{solution}\:{for}\:{x}. \\ $$
Commented by Davidtim last updated on 01/Apr/24
$${thanks}\:{you}\:{are}\:{an}\:{exceptional}\:{of}\: \\ $$$${science}. \\ $$$${would}\:{you}\:{mind}\:{to}\:{prove}\:{the}\:{all}\:{of}\: \\ $$$${three}\:{forms}? \\ $$
Commented by mr W last updated on 01/Apr/24
$${y}={x}^{{x}} ={e}^{{x}\mathrm{ln}\:{x}} >\mathrm{0} \\ $$$${y}'={e}^{{x}\mathrm{ln}\:{x}} \left(\mathrm{ln}\:{x}+\mathrm{1}\right)={x}^{{x}} \left(\mathrm{ln}\:{x}+\mathrm{1}\right) \\ $$$${y}'=\mathrm{0}:\:\mathrm{ln}\:{x}+\mathrm{1}=\mathrm{0}\:\Rightarrow{x}=\frac{\mathrm{1}}{{e}} \\ $$$${that}\:{means}: \\ $$$${if}\:{x}>\frac{\mathrm{1}}{{e}},{y}'>\mathrm{0}\:\Rightarrow{y}={x}^{{x}} \:{is}\:{strictly}\:{increasing} \\ $$$${if}\:\mathrm{0}<{x}<\frac{\mathrm{1}}{{e}},{y}'<\mathrm{0}\:\Rightarrow{y}={x}^{{x}} \:{is}\:{strictly}\:{decreasing} \\ $$$${at}\:{x}=\frac{\mathrm{1}}{{e}},\:{y}_{{min}} =\frac{\mathrm{1}}{\:\sqrt[{{e}}]{{e}}} \\ $$