Menu Close

x-3-y-3-1-find-the-implceat-second-derivative-




Question Number 205827 by mustafazaheen last updated on 31/Mar/24
x^3 +y^3 =1  find the implceat second derivative
x3+y3=1findtheimplceatsecondderivative
Answered by cortano12 last updated on 31/Mar/24
 3x^2 + 3y^2 y′ = 0    (dy/dx) = −(x^2 /y^2 )=−x^2 y^(−2)    (d/dx) [ (dy/dx) ]= (d/dx) [−x^2 y^(−2)  ]    (d^2 y/dx^2 ) = −2xy^(−2)  +2x^2 y^(−3)  y′     (d^2 y/dx^2 ) = −((2x)/y^2 ) +((2x^2 )/y^3 ) . (((−x^2 )/y^2 ))             = ((−2x)/y^2 )−((2x^4 )/y^5 ) =((−2xy^3 −2x^4 )/y^5 )            =((−2x(x^3 +y^3 ))/y^5 )= −((2x)/y^5 )
3x2+3y2y=0dydx=x2y2=x2y2ddx[dydx]=ddx[x2y2]d2ydx2=2xy2+2x2y3yd2ydx2=2xy2+2x2y3.(x2y2)=2xy22x4y5=2xy32x4y5=2x(x3+y3)y5=2xy5
Answered by TonyCWX08 last updated on 31/Mar/24
  x^3 +y^3 −1=0  f(x,y)=x^3 +y^3 −1  f_x (x,y)=3x^2   f_y (x,y)=3y^2     (dy/dx)  =−((3x^2 )/(3y^2 ))  =−(x^2 /y^2 )    f(x,y)=−(x^2 /y^2 )  f_x (x,y)=−((2x)/y^2 )  f_y (x,y)=((2x^2 )/y^3 )  (d^2 y/dx^2 )  =−((−2x)/y^2 )÷((2x^2 )/y^3 )  =((2x)/y^2 )×(y^3 /(2x^2 ))  =(y/x)
x3+y31=0f(x,y)=x3+y31fx(x,y)=3x2fy(x,y)=3y2dydx=3x23y2=x2y2f(x,y)=x2y2fx(x,y)=2xy2fy(x,y)=2x2y3d2ydx2=2xy2÷2x2y3=2xy2×y32x2=yx
Commented by Frix last updated on 31/Mar/24
Obviously this is wrong.  x^3 +y^3 =1 ⇔ y=(1−x^3 )^(1/3)  ⇒  y′′=−((2x)/((1−x^3 )^(5/3) ))=−((2x)/y^5 )≠(y/x)
Obviouslythisiswrong.x3+y3=1y=(1x3)13y=2x(1x3)53=2xy5yx

Leave a Reply

Your email address will not be published. Required fields are marked *