Menu Close

0-pi-1-pi-2-x-1-sin-3-x-3picosx-4sinx-sin-2-x-4-dx-




Question Number 205873 by universe last updated on 01/Apr/24
∫_0 ^π (1/π^2 ) (x/( (√(1+sin^3 x ))))[(3πcosx+4sinx)sin^2 x+4]dx
0π1π2x1+sin3x[(3πcosx+4sinx)sin2x+4]dx
Answered by Berbere last updated on 02/Apr/24
x→π−x;let Ω=integral  Ω=∫_0 ^π (1/π^2 ).((3πxcos(x)sin^2 (x))/( (√(1+sin^3 (x)))))dx+(1/π^2 )∫_0 ^π ((4(1+sin^3 (x))x)/( (√(1+sin^3 (x)))))dx  =(1/π)∫_0 ^π ((3cos(x)sin^2 (x))/( (√(1+sin^3 (x))))).x+4∫_0 ^π (√(1+sin^3 (x)))xdx  =(1/π).A+4B  B;x→π−x;B=(1/π^2 )∫_0 ^π (√(1+sin^3 (x)))(π−x)dx⇒2B=(1/π)∫_0 ^π (√(1+sin^3 (x)))  B=(1/(2π))∫_0 ^π (√(1+sin^3 (x)))dx  A; { ((u′=((3cos(x)sin^2 (x))/( (√(1+sin^3 (x)))));u=2(√(1+sin^3 (x))))),((v=x⇒v′=1)) :}  A=[2x(√(1+sin^3 (x)))]_0 ^π −2∫_0 ^π (√(1+sin^3 (x)))dx  =2π−2∫_0 ^π (√(1+sin^3 (x)))dx  Ω=(1/π)(2π−2∫_0 ^π (√(1+sin^3 (x)))dx)+4((1/(2π))∫_0 ^π (√(1+sin^3 (x)))dx)  =2
xπx;letΩ=integralΩ=0π1π2.3πxcos(x)sin2(x)1+sin3(x)dx+1π20π4(1+sin3(x))x1+sin3(x)dx=1π0π3cos(x)sin2(x)1+sin3(x).x+40π1+sin3(x)xdx=1π.A+4BB;xπx;B=1π20π1+sin3(x)(πx)dx2B=1π0π1+sin3(x)B=12π0π1+sin3(x)dxA;{u=3cos(x)sin2(x)1+sin3(x);u=21+sin3(x)v=xv=1A=[2x1+sin3(x)]0π20π1+sin3(x)dx=2π20π1+sin3(x)dxΩ=1π(2π20π1+sin3(x)dx)+4(12π0π1+sin3(x)dx)=2

Leave a Reply

Your email address will not be published. Required fields are marked *