Menu Close

Find-lim-n-1-n-2n-n-




Question Number 205885 by hardmath last updated on 01/Apr/24
Find:  lim_(n→∞)  ()^(1/n)  (((2n)),((  n)) ) = ?
Find:limnn(2nn)=?
Answered by MM42 last updated on 03/Apr/24
 (((2n)),((  n)) )=(((2n)(2n−1)(2n−2)...(n+3)(n+2)(n+1))/(n(n−1)(n−2)...3×2×1))  a=()^(1/n)  (((2n)),((  n)) )  ⇒lna=(1/n)[ln(2)+ln(2+(1/(n−1)))+ln(2+(2/(n−2)))+...+ln(2+((n−3)/3))(2+((n−2)/2))(2+((n−1)/1))  =(1/n)Σ_(i=0) ^(n−1) ln(2+((i/n)/(1−(i/n))))  ⇒lim_(n→∞) a_n =∫_0 ^( 1) ln(2+(x/(1−x)))fx  =∫_0 ^( 1) [ln(2−x)−ln(1−x)]dx  =(x−2)ln(2−x)−(x−1)ln(1−x))]_0 ^1   =2ln2=ln4⇒lim_(n→∞) a_n =4 ✓
(2nn)=(2n)(2n1)(2n2)(n+3)(n+2)(n+1)n(n1)(n2)3×2×1a=n(2nn)lna=1n[ln(2)+ln(2+1n1)+ln(2+2n2)++ln(2+n33)(2+n22)(2+n11)=1nn1i=0ln(2+in1in)limnan=01ln(2+x1x)fx=01[ln(2x)ln(1x)]dx=(x2)ln(2x)(x1)ln(1x))]01=2ln2=ln4limnan=4
Answered by Frix last updated on 01/Apr/24
n→∞ ⇒ n!→((n/e))^n (√(2πn)) ⇒  ( (((2n)),(n) ))^(1/n) →(4/( ((πn))^(1/n) ))=4
nn!(ne)n2πn(2nn)n4πnn=4

Leave a Reply

Your email address will not be published. Required fields are marked *