Menu Close

9-Mathematical-Analysis-I-X-d-is-a-metric-space-and-p-n-n-1-is-a-sequence-in-X-such-that-p-n-convergent-p-If-K-p-n-n-1-p-




Question Number 205971 by mnjuly1970 last updated on 03/Apr/24
              9  Mathematical    Analysis ( I )    (X , d ) is a metric space and            { p_n }_(n=1) ^∞ is a sequence in X        such that , p_n →^(convergent)  p . If , K= {p_n }_(n=1) ^∞ ∪ { p } then       prove  K , is compact in X .
9MathematicalAnalysis(I)(X,d)isametricspaceand{pn}n=1isasequenceinXsuchthat,pnconvergentp.If,K={pn}n=1{p}thenproveK,iscompactinX.
Commented by aleks041103 last updated on 03/Apr/24
I suppose you meant  K={p_k }_(k=1) ^∞ ∪{p}
IsupposeyoumeantK={pk}k=1{p}
Answered by aleks041103 last updated on 03/Apr/24
If K={p}∪{p_k }_(k=1) ^∞  then the proof is as  follows:  Let O be any open cover of K.  p∈K⇒∃V∈O:p∈V   {: ((V is open)),((p∈V)),((p_k →p)) } ⇒ ∃N∈N: ∀k>N, p_k ∈V  For ∀k=1,...,N, ∃U_k ∈O: p_k ∈U_k , since  O is a cover of K (and p_k ∈K).  Therefore if O′={U_1 ,...,U_N ,V}⊆O,  then by the above construction,  O′ is a finite open subcover of K.    ⇒ K is compact.
IfK={p}{pk}k=1thentheproofisasfollows:LetObeanyopencoverofK.pKVO:pVVisopenpVpkp}NN:k>N,pkVFork=1,,N,UkO:pkUk,sinceOisacoverofK(andpkK).ThereforeifO={U1,,UN,V}O,thenbytheaboveconstruction,OisafiniteopensubcoverofK.Kiscompact.
Commented by Frix last updated on 04/Apr/24
I am he as you are he and you are me and  we are all together [John Lennon 1967]
Iamheasyouareheandyouaremeandwearealltogether[JohnLennon1967]
Commented by mnjuly1970 last updated on 03/Apr/24
  thanks alot sir Frix
thanksalotsirFrix
Commented by aleks041103 last updated on 03/Apr/24
No problem.  Bit I′m not Mr Frix, although I feel flattered  to be compared to him  ;)
Noproblem.BitImnotMrFrix,althoughIfeelflatteredtobecomparedtohim;)
Commented by mnjuly1970 last updated on 04/Apr/24
    thank you so much sir aleks.       I am so sorry sir... ⋛
thankyousomuchsiraleks.Iamsosorrysir
Commented by mnjuly1970 last updated on 04/Apr/24
 ⋛
Answered by Berbere last updated on 04/Apr/24
let u(n)∈N^K   lets show That ∃ϕ N→N increading  such That U_(ϕ(n))  cv  1 if  n Tack finit value  Ther exist N  such That ∀n∈N  U_n ∈{U_1 ,......,U_N };U_1 ,U_2 ,...U_N   So exist U_(1≤m≤N)  That appair infinity times  ϕ N→N  ϕ(n)=  eithe n is defind by  { ((ϕ(1)=m)),((ϕ(n+1)={inf n∈N ∣ϕ(n+1)>ϕ(n)&U_(ϕ(n+1)) =U_m )) :}  ϕ exist since  U_m  repet infinity times  ∀n∈N U_(ϕ(n)) =U_m  cv  if U_n  Tack infinity value  we defind ϕ by  ϕ(1)=U_1 =p_n_1    u_n =p_(v(n))   ϕ(n+1)=inf(m∈N∣ m>ϕ(n),v_m >v_(ϕ(n)) }  ϕ is while definde since u_n  Tack infinity value of p  we canstrant {p_(v(1)) ,p_(v(2)) ....P_(v(n)) ...}  sinc p_n  Cv U_(ϕ(n))  cv  so evrey sequence Hase a sub sequence?Cv  K is compact Sorry for my english
letu(n)NKletsshowThatφNNincreadingsuchThatUφ(n)cv1ifnTackfinitvalueTherexistNsuchThatnNUn{U1,,UN};U1,U2,UNSoexistU1mNThatappairinfinitytimesφNNφ(n)=eithenisdefindby{φ(1)=mφ(n+1)={infnNφ(n+1)>φ(n)&Uφ(n+1)=UmφexistsinceUmrepetinfinitytimesnNUφ(n)=UmcvifUnTackinfinityvaluewedefindφbyφ(1)=U1=pn1un=pv(n)φ(n+1)=inf(mNm>φ(n),vm>vφ(n)}φiswhiledefindesinceunTackinfinityvalueofpwecanstrant{pv(1),pv(2).Pv(n)}sincpnCvUφ(n)cvsoevreysequenceHaseasubsequence?CvKiscompactSorryformyenglish
Commented by mnjuly1970 last updated on 05/Apr/24
thank you so much sir
thankyousomuchsirthankyousomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *