Menu Close

9-Mathematical-Analysis-I-X-d-is-a-metric-space-and-p-n-n-1-is-a-sequence-in-X-such-that-p-n-convergent-p-If-K-p-n-n-1-p-




Question Number 205971 by mnjuly1970 last updated on 03/Apr/24
              9  Mathematical    Analysis ( I )    (X , d ) is a metric space and            { p_n }_(n=1) ^∞ is a sequence in X        such that , p_n →^(convergent)  p . If , K= {p_n }_(n=1) ^∞ ∪ { p } then       prove  K , is compact in X .
$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{9}\:\:\mathscr{M}{athematical}\:\:\:\:\mathscr{A}{nalysis}\:\left(\:{I}\:\right) \\ $$$$\:\:\left({X}\:,\:{d}\:\right)\:{is}\:{a}\:{metric}\:{space}\:{and}\:\:\:\:\:\:\: \\ $$$$\:\:\:\left\{\:{p}_{{n}} \right\}_{{n}=\mathrm{1}} ^{\infty} {is}\:{a}\:{sequence}\:{in}\:{X}\: \\ $$$$\:\:\:\:\:{such}\:{that}\:,\:{p}_{{n}} \overset{{convergent}} {\rightarrow}\:{p}\:.\:{If}\:,\:{K}=\:\left\{{p}_{{n}} \right\}_{{n}=\mathrm{1}} ^{\infty} \cup\:\left\{\:{p}\:\right\}\:{then} \\ $$$$\:\:\:\:\:{prove}\:\:{K}\:,\:{is}\:{compact}\:{in}\:{X}\:.\: \\ $$$$\:\:\:\: \\ $$
Commented by aleks041103 last updated on 03/Apr/24
I suppose you meant  K={p_k }_(k=1) ^∞ ∪{p}
$${I}\:{suppose}\:{you}\:{meant} \\ $$$${K}=\left\{{p}_{{k}} \right\}_{{k}=\mathrm{1}} ^{\infty} \cup\left\{{p}\right\} \\ $$
Answered by aleks041103 last updated on 03/Apr/24
If K={p}∪{p_k }_(k=1) ^∞  then the proof is as  follows:  Let O be any open cover of K.  p∈K⇒∃V∈O:p∈V   {: ((V is open)),((p∈V)),((p_k →p)) } ⇒ ∃N∈N: ∀k>N, p_k ∈V  For ∀k=1,...,N, ∃U_k ∈O: p_k ∈U_k , since  O is a cover of K (and p_k ∈K).  Therefore if O′={U_1 ,...,U_N ,V}⊆O,  then by the above construction,  O′ is a finite open subcover of K.    ⇒ K is compact.
$${If}\:{K}=\left\{{p}\right\}\cup\left\{{p}_{{k}} \right\}_{{k}=\mathrm{1}} ^{\infty} \:{then}\:{the}\:{proof}\:{is}\:{as} \\ $$$${follows}: \\ $$$${Let}\:\mathcal{O}\:{be}\:{any}\:{open}\:{cover}\:{of}\:{K}. \\ $$$${p}\in{K}\Rightarrow\exists{V}\in\mathcal{O}:{p}\in{V} \\ $$$$\left.\begin{matrix}{{V}\:{is}\:{open}}\\{{p}\in{V}}\\{{p}_{{k}} \rightarrow{p}}\end{matrix}\right\}\:\Rightarrow\:\exists{N}\in\mathbb{N}:\:\forall{k}>{N},\:{p}_{{k}} \in{V} \\ $$$${For}\:\forall{k}=\mathrm{1},…,{N},\:\exists{U}_{{k}} \in\mathcal{O}:\:{p}_{{k}} \in{U}_{{k}} ,\:{since} \\ $$$$\mathcal{O}\:{is}\:{a}\:{cover}\:{of}\:{K}\:\left({and}\:{p}_{{k}} \in{K}\right). \\ $$$${Therefore}\:{if}\:\mathcal{O}'=\left\{{U}_{\mathrm{1}} ,…,{U}_{{N}} ,{V}\right\}\subseteq\mathcal{O}, \\ $$$${then}\:{by}\:{the}\:{above}\:{construction}, \\ $$$$\mathcal{O}'\:{is}\:{a}\:{finite}\:{open}\:{subcover}\:{of}\:{K}. \\ $$$$ \\ $$$$\Rightarrow\:{K}\:{is}\:{compact}. \\ $$
Commented by Frix last updated on 04/Apr/24
I am he as you are he and you are me and  we are all together [John Lennon 1967]
$$\mathrm{I}\:\mathrm{am}\:\mathrm{he}\:\mathrm{as}\:\mathrm{you}\:\mathrm{are}\:\mathrm{he}\:\mathrm{and}\:\mathrm{you}\:\mathrm{are}\:\mathrm{me}\:\mathrm{and} \\ $$$$\mathrm{we}\:\mathrm{are}\:\mathrm{all}\:\mathrm{together}\:\left[\mathrm{John}\:\mathrm{Lennon}\:\mathrm{1967}\right] \\ $$
Commented by mnjuly1970 last updated on 03/Apr/24
  thanks alot sir Frix
$$\:\:{thanks}\:{alot}\:{sir}\:{Frix} \\ $$
Commented by aleks041103 last updated on 03/Apr/24
No problem.  Bit I′m not Mr Frix, although I feel flattered  to be compared to him  ;)
$${No}\:{problem}. \\ $$$${Bit}\:{I}'{m}\:{not}\:{Mr}\:{Frix},\:{although}\:{I}\:{feel}\:{flattered} \\ $$$${to}\:{be}\:{compared}\:{to}\:{him} \\ $$$$\left.;\right) \\ $$
Commented by mnjuly1970 last updated on 04/Apr/24
    thank you so much sir aleks.       I am so sorry sir... ⋛
$$\:\:\:\:{thank}\:{you}\:{so}\:{much}\:{sir}\:{aleks}. \\ $$$$\:\:\:\:\:{I}\:{am}\:{so}\:{sorry}\:{sir}…\:\underline{\underbrace{\lesseqgtr}} \\ $$
Commented by mnjuly1970 last updated on 04/Apr/24
 ⋛
$$\:\cancel{\lesseqgtr} \\ $$
Answered by Berbere last updated on 04/Apr/24
let u(n)∈N^K   lets show That ∃ϕ N→N increading  such That U_(ϕ(n))  cv  1 if  n Tack finit value  Ther exist N  such That ∀n∈N  U_n ∈{U_1 ,......,U_N };U_1 ,U_2 ,...U_N   So exist U_(1≤m≤N)  That appair infinity times  ϕ N→N  ϕ(n)=  eithe n is defind by  { ((ϕ(1)=m)),((ϕ(n+1)={inf n∈N ∣ϕ(n+1)>ϕ(n)&U_(ϕ(n+1)) =U_m )) :}  ϕ exist since  U_m  repet infinity times  ∀n∈N U_(ϕ(n)) =U_m  cv  if U_n  Tack infinity value  we defind ϕ by  ϕ(1)=U_1 =p_n_1    u_n =p_(v(n))   ϕ(n+1)=inf(m∈N∣ m>ϕ(n),v_m >v_(ϕ(n)) }  ϕ is while definde since u_n  Tack infinity value of p  we canstrant {p_(v(1)) ,p_(v(2)) ....P_(v(n)) ...}  sinc p_n  Cv U_(ϕ(n))  cv  so evrey sequence Hase a sub sequence?Cv  K is compact Sorry for my english
$${let}\:{u}\left({n}\right)\in\mathbb{N}^{{K}} \\ $$$${lets}\:{show}\:{That}\:\exists\varphi\:{N}\rightarrow{N}\:{increading} \\ $$$${such}\:{That}\:{U}_{\varphi\left({n}\right)} \:{cv} \\ $$$$\mathrm{1}\:{if}\:\:{n}\:{Tack}\:{finit}\:{value}\:\:{Ther}\:{exist}\:{N} \\ $$$${such}\:{That}\:\forall{n}\in\mathbb{N}\:\:{U}_{{n}} \in\left\{{U}_{\mathrm{1}} ,……,{U}_{{N}} \right\};{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,…{U}_{{N}} \\ $$$${So}\:{exist}\:{U}_{\mathrm{1}\leqslant{m}\leqslant{N}} \:{That}\:{appair}\:{infinity}\:{times} \\ $$$$\varphi\:{N}\rightarrow{N} \\ $$$$\varphi\left({n}\right)= \\ $$$${eithe}\:{n}\:{is}\:{defind}\:{by}\:\begin{cases}{\varphi\left(\mathrm{1}\right)={m}}\\{\varphi\left({n}+\mathrm{1}\right)=\left\{{inf}\:{n}\in\mathbb{N}\:\mid\varphi\left({n}+\mathrm{1}\right)>\varphi\left({n}\right)\&{U}_{\varphi\left({n}+\mathrm{1}\right)} ={U}_{{m}} \right.}\end{cases} \\ $$$$\varphi\:{exist}\:{since}\:\:{U}_{{m}} \:{repet}\:{infinity}\:{times} \\ $$$$\forall{n}\in\mathbb{N}\:{U}_{\varphi\left({n}\right)} ={U}_{{m}} \:{cv} \\ $$$${if}\:{U}_{{n}} \:{Tack}\:{infinity}\:{value} \\ $$$${we}\:{defind}\:\varphi\:{by} \\ $$$$\varphi\left(\mathrm{1}\right)={U}_{\mathrm{1}} ={p}_{{n}_{\mathrm{1}} } \\ $$$${u}_{{n}} ={p}_{{v}\left({n}\right)} \\ $$$$\varphi\left({n}+\mathrm{1}\right)={inf}\left({m}\in\mathbb{N}\mid\:{m}>\varphi\left({n}\right),{v}_{{m}} >{v}_{\varphi\left({n}\right)} \right\} \\ $$$$\varphi\:{is}\:{while}\:{definde}\:{since}\:{u}_{{n}} \:{Tack}\:{infinity}\:{value}\:{of}\:{p} \\ $$$${we}\:{canstrant}\:\left\{{p}_{{v}\left(\mathrm{1}\right)} ,{p}_{{v}\left(\mathrm{2}\right)} ….{P}_{{v}\left({n}\right)} …\right\} \\ $$$${sinc}\:{p}_{{n}} \:{Cv}\:{U}_{\varphi\left({n}\right)} \:{cv} \\ $$$${so}\:{evrey}\:{sequence}\:{Hase}\:{a}\:{sub}\:{sequence}?{Cv} \\ $$$${K}\:{is}\:{compact}\:{Sorry}\:{for}\:{my}\:{english} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 05/Apr/24
thank you so much sir
$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *