Menu Close

calculate-0-dx-1-x-4-x-8-




Question Number 205928 by mathzup last updated on 03/Apr/24
calculate ∫_0 ^∞   (dx/(1+x^4 +x^8 ))
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} +{x}^{\mathrm{8}} } \\ $$
Answered by Frix last updated on 03/Apr/24
∫(dx/(x^8 +x^4 +1))=  =(1/4)∫(dx/(x^2 −x+1))+  +(1/4)∫(dx/(x^2 +x+1))−  −((√3)/(12))∫((2x−(√3))/(x^2 −(√3)x+1))dx+  +((√3)/(12))∫((2x+(√3))/(x^2 +(√3)x+1))dx=  =((√3)/6)tan^(−1)  (((√3)(2x−1))/3) +  +((√3)/6)tan^(−1)  (((√3)(2x+1))/3) −  −((√3)/(12))ln (x^2 −(√3)x+1) +  +((√3)/(12))ln (x^2 +(√3)x+1)  ⇒  Answer is ((√3)/6)π
$$\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{4}} +\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}+ \\ $$$$+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dx}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}− \\ $$$$−\frac{\sqrt{\mathrm{3}}}{\mathrm{12}}\int\frac{\mathrm{2}{x}−\sqrt{\mathrm{3}}}{{x}^{\mathrm{2}} −\sqrt{\mathrm{3}}{x}+\mathrm{1}}{dx}+ \\ $$$$+\frac{\sqrt{\mathrm{3}}}{\mathrm{12}}\int\frac{\mathrm{2}{x}+\sqrt{\mathrm{3}}}{{x}^{\mathrm{2}} +\sqrt{\mathrm{3}}{x}+\mathrm{1}}{dx}= \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\mathrm{tan}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\mathrm{3}}\:+ \\ $$$$+\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\mathrm{tan}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}\:− \\ $$$$−\frac{\sqrt{\mathrm{3}}}{\mathrm{12}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −\sqrt{\mathrm{3}}{x}+\mathrm{1}\right)\:+ \\ $$$$+\frac{\sqrt{\mathrm{3}}}{\mathrm{12}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +\sqrt{\mathrm{3}}{x}+\mathrm{1}\right) \\ $$$$\Rightarrow \\ $$$$\mathrm{Answer}\:\mathrm{is}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *