Menu Close

D-4y-2-sin-xy-dxdy-D-x-y-x-0-y-pi-2-0-x-y-0-y-pi-2-




Question Number 205935 by EJJDJX last updated on 03/Apr/24
∫∫_D (4y^2 sin(xy))dxdy  = ???  D:       x=y      x=0       y=(√(π/2))               0≤x≤y       0≤y≤(√(π/2))
$$\int\underset{{D}} {\int}\left(\mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right)\right){dxdy}\:\:=\:??? \\ $$$${D}:\:\:\:\:\:\:\:{x}={y}\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:\:\:\:\:{y}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant{y}\:\:\:\:\:\:\:\mathrm{0}\leqslant{y}\leqslant\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$
Answered by Berbere last updated on 03/Apr/24
∫_0 ^(√(π/2)) ∫_0 ^y 4y^2 sin(xy)dxdy  =∫_0 ^(√(π/2)) −4y[cos(xy)]_0 ^y dy  =∫_0 ^(√(π/2)) −4y[cos(y^2 )−1)dy  =−2∫_0 ^(√(π/2)) (cos(y^2 )−1)dy^2   =2∫_0 ^(√(π/2)) (sin(y^2 )−y^2 )  =2(1−(π/2))
$$\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} \int_{\mathrm{0}} ^{{y}} \mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right){dxdy} \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} −\mathrm{4}{y}\left[{cos}\left({xy}\right)\right]_{\mathrm{0}} ^{{y}} {dy} \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} −\mathrm{4}{y}\left[{cos}\left({y}^{\mathrm{2}} \right)−\mathrm{1}\right){dy} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} \left({cos}\left({y}^{\mathrm{2}} \right)−\mathrm{1}\right){dy}^{\mathrm{2}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} \left({sin}\left({y}^{\mathrm{2}} \right)−{y}^{\mathrm{2}} \right) \\ $$$$=\mathrm{2}\left(\mathrm{1}−\frac{\pi}{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *