Question Number 205935 by EJJDJX last updated on 03/Apr/24
$$\int\underset{{D}} {\int}\left(\mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right)\right){dxdy}\:\:=\:??? \\ $$$${D}:\:\:\:\:\:\:\:{x}={y}\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:\:\:\:\:{y}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant{y}\:\:\:\:\:\:\:\mathrm{0}\leqslant{y}\leqslant\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$
Answered by Berbere last updated on 03/Apr/24
$$\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} \int_{\mathrm{0}} ^{{y}} \mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right){dxdy} \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} −\mathrm{4}{y}\left[{cos}\left({xy}\right)\right]_{\mathrm{0}} ^{{y}} {dy} \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} −\mathrm{4}{y}\left[{cos}\left({y}^{\mathrm{2}} \right)−\mathrm{1}\right){dy} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} \left({cos}\left({y}^{\mathrm{2}} \right)−\mathrm{1}\right){dy}^{\mathrm{2}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{\frac{\pi}{\mathrm{2}}}} \left({sin}\left({y}^{\mathrm{2}} \right)−{y}^{\mathrm{2}} \right) \\ $$$$=\mathrm{2}\left(\mathrm{1}−\frac{\pi}{\mathrm{2}}\right) \\ $$