Question Number 206025 by cortano12 last updated on 05/Apr/24
$$\:\:\:\:\:\mathrm{2}^{\mathrm{2024}} \:=\:{x}\:\left({mod}\:\mathrm{10}\right)\: \\ $$
Answered by BaliramKumar last updated on 05/Apr/24
$$\mathrm{Find}\:\mathrm{unit}\:\mathrm{digit} \\ $$$$\mathrm{2}^{\mathrm{2024}} \:=\:\mathrm{2}^{\mathrm{4k}\:+\:\mathrm{4}} \:=\:\mathrm{2}^{\mathrm{4}} \:\:=\:\mathrm{16}\:\Rightarrow\:\mathrm{6} \\ $$
Answered by Rasheed.Sindhi last updated on 05/Apr/24
$$\:\:\:\:\:\mathrm{2}^{\mathrm{2024}} \:=\:{x}\:\left({mod}\:\mathrm{10}\right)\: \\ $$$$\:\:\:\mathrm{2}^{\mathrm{4}} \equiv\mathrm{6}\left({mod}\:\mathrm{10}\right) \\ $$$$\:\mathrm{2}^{\mathrm{2024}} \:\equiv\:{x}\:\left({mod}\:\mathrm{10}\right) \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{4}×\mathrm{506}} \equiv{x}\left({mod}\:\mathrm{10}\right) \\ $$$$\Rightarrow\left(\mathrm{2}^{\mathrm{4}} \right)^{\mathrm{506}} \equiv{x}\left({mod}\:\mathrm{10}\right) \\ $$$$\Rightarrow\left(\mathrm{6}\right)^{\mathrm{506}} \equiv{x}\left({mod}\:\mathrm{10}\right) \\ $$$${Observe}\:{that}\:\mathrm{6}^{{k}} \equiv\mathrm{6}\left({mod}\:\mathrm{10}\right)\:\forall{k}\in\mathbb{N} \\ $$$$\therefore\:\mathrm{6}^{\mathrm{506}} \equiv\mathrm{6}\:\left({mod}\:\mathrm{10}\right) \\ $$$$\therefore\:\left(\mathrm{2}^{\mathrm{4}} \right)^{\mathrm{506}} \equiv\mathrm{6}\:\left({mod}\:\mathrm{10}\right) \\ $$$$\therefore\:\mathrm{2}^{\mathrm{2024}} \equiv\mathrm{6}\left({mod}\:\mathrm{10}\right) \\ $$