Menu Close

Prove-that-2-sin-2-2-cos-2-2-2-




Question Number 206048 by MATHEMATICSAM last updated on 05/Apr/24
Prove that 2^(sin^2 θ)  + 2^(cos^2 θ)  ≥ 2(√2).
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{2}^{\mathrm{sin}^{\mathrm{2}} \theta} \:+\:\mathrm{2}^{\mathrm{cos}^{\mathrm{2}} \theta} \:\geqslant\:\mathrm{2}\sqrt{\mathrm{2}}. \\ $$
Answered by A5T last updated on 05/Apr/24
2^(sin^2 θ) +2^(coz^2 θ) ≥2(√2^(sin^2 θ+cos^2 θ) )=2(√2)
$$\mathrm{2}^{{sin}^{\mathrm{2}} \theta} +\mathrm{2}^{{coz}^{\mathrm{2}} \theta} \geqslant\mathrm{2}\sqrt{\mathrm{2}^{{sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta} }=\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *