Question Number 206053 by mr W last updated on 05/Apr/24
Commented by mr W last updated on 05/Apr/24
$${an}\:{unsolved}\:{old}\:{question}\:\left({Q}\mathrm{182165}\right) \\ $$
Answered by mr W last updated on 05/Apr/24
Commented by mr W last updated on 06/Apr/24
$$\frac{{AE}}{{BE}}=\frac{{CF}}{{DF}}=\frac{\mathrm{1}}{{k}},\:{say} \\ $$$$\frac{\Delta{BCF}}{\Delta{BDF}}=\frac{{CF}}{{DF}}=\frac{\mathrm{1}}{{k}} \\ $$$$\Rightarrow{k}\left({S}_{\mathrm{1}} +{S}_{\mathrm{3}} \right)=\Delta{DBF}\:\:\:…\left({i}\right) \\ $$$$\frac{\Delta{DAE}}{\Delta{DBE}}=\frac{{AE}}{{BE}}=\frac{\mathrm{1}}{{k}} \\ $$$$\Rightarrow{k}\left({S}_{\mathrm{2}} +{S}_{\mathrm{6}} \right)=\Delta{DBE}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$${k}\left({S}_{\mathrm{1}} +{S}_{\mathrm{3}} +{S}_{\mathrm{2}} +{S}_{\mathrm{6}} \right)=\Delta{DBF}+\Delta{DBE} \\ $$$$\Rightarrow{k}\left({S}_{\mathrm{1}} +{S}_{\mathrm{3}} +{S}_{\mathrm{2}} +{S}_{\mathrm{6}} \right)={S}+{S}_{\mathrm{4}} +{S}_{\mathrm{5}} \:\:\:…\left({iii}\right) \\ $$$${similarly} \\ $$$$\Rightarrow{S}_{\mathrm{1}} +{S}_{\mathrm{5}} +{S}_{\mathrm{2}} +{S}_{\mathrm{4}} ={k}\left({S}+{S}_{\mathrm{3}} +{S}_{\mathrm{6}} \right)\:\:\:…\left({iv}\right) \\ $$$$\left({iii}\right)+\left({iv}\right): \\ $$$${k}\left({S}_{\mathrm{1}} +{S}_{\mathrm{3}} +{S}_{\mathrm{2}} +{S}_{\mathrm{6}} \right)+{S}_{\mathrm{1}} +{S}_{\mathrm{5}} +{S}_{\mathrm{2}} +{S}_{\mathrm{4}} ={S}+{S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{k}\left({S}+{S}_{\mathrm{3}} +{S}_{\mathrm{6}} \right) \\ $$$$\left({k}+\mathrm{1}\right)\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} \right)=\left({k}+\mathrm{1}\right){S} \\ $$$$\Rightarrow{S}={S}_{\mathrm{1}} +{S}_{\mathrm{2}} \:\checkmark \\ $$