Menu Close

1-x-3-x-2-1-dx-




Question Number 206096 by RoseAli last updated on 06/Apr/24
∫(1/(x^3 (√(x^2 −1)))) .dx
1x3x21.dx
Answered by Frix last updated on 07/Apr/24
∫(dx/(x^3 (√(x^2 −1)))) =^(t=(√(x^2 −1)))  ∫(dt/((t^2 +1)^2 ))  From here we could use Ostrogradski′s  Method or this:  ∫(dt/((t^2 +1)^2 )) =^(u=tan^(−1)  t)  ∫cos^2  u du=  =(1/2)∫(1+cos 2u)du=  =(u/2)+((sin 2u)/4)=((tan^(−1)  t)/2)+(t/(2(t^2 +1)))=  =((tan^(−1)  (√(x^2 −1)))/2)+((√(x^2 −1))/(2x))+C
dxx3x21=t=x21dt(t2+1)2FromherewecoulduseOstrogradskisMethodorthis:dt(t2+1)2=u=tan1tcos2udu==12(1+cos2u)du==u2+sin2u4=tan1t2+t2(t2+1)==tan1x212+x212x+C

Leave a Reply

Your email address will not be published. Required fields are marked *