Menu Close

If-x-and-y-are-real-numbers-then-is-it-possible-that-sec-2xy-x-2-y-2-




Question Number 206160 by MATHEMATICSAM last updated on 08/Apr/24
If x and y are real numbers then is it  possible that secθ = ((2xy)/(x^2  + y^2 )) ?
Ifxandyarerealnumbersthenisitpossiblethatsecθ=2xyx2+y2?
Commented by mr W last updated on 08/Apr/24
only if x=±y.
onlyifx=±y.
Answered by mahdipoor last updated on 08/Apr/24
sec a=((2xy)/(x^2 +y^2 ))∈]−1,1[⇒  ((2xy)/(x^2 +y^2 ))≤−1⇒2xy≤−x^2 −y^2 ⇒(x+y)^2 ≤0  ⇒x=−y  ((2xy)/(x^2 +y^2 ))≥1⇒2xy≥x^2 +y^2 ⇒0≥(x−y)^2   ⇒x=y  ⇒⇒x=±y
seca=2xyx2+y2]1,1[2xyx2+y212xyx2y2(x+y)20x=y2xyx2+y212xyx2+y20(xy)2x=y⇒⇒x=±y
Commented by Frix last updated on 08/Apr/24
sec α =(1/(cos α)) ⇒ sec α ∈(−∞, −1]∪[1, ∞)
secα=1cosαsecα(,1][1,)
Answered by Frix last updated on 08/Apr/24
sec θ =(1/(cos θ))  cos θ =((x^2 +y^2 )/(2xy))=c  x^2 +y^2 =2cxy  y^2 −2cxy+x^2 =0  y=(c±(√(c^2 −1)))x  y=(cos θ ±i sin θ)x  y∈R ⇒ θ=nπ ⇒ cos θ =±1 ⇒ y=±x
secθ=1cosθcosθ=x2+y22xy=cx2+y2=2cxyy22cxy+x2=0y=(c±c21)xy=(cosθ±isinθ)xyRθ=nπcosθ=±1y=±x

Leave a Reply

Your email address will not be published. Required fields are marked *