Menu Close

Expand-x-2-2x-3-respect-to-x-2-a-x-2-2-2-x-2-3-b-x-2-2-2-x-2-3-c-x-2-2-2-x-2-3-d-x-2-2-2-x-2-3-is-it-taylors-theorem-




Question Number 206230 by BaliramKumar last updated on 09/Apr/24
Expand    x^2  + 2x + 3   respect to x = −2.  (a) (x − 2)^2 −2(x + 2) + 3  (b) (x + 2)^2 −2(x + 2) + 3  (c) (x + 2)^2 + 2(x + 2) + 3  (d) (x − 2)^2 −2(x − 2) − 3    is it taylors theorem?
$$\mathrm{Expand}\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{3}\:\:\:{respect}\:{to}\:{x}\:=\:−\mathrm{2}. \\ $$$$\left(\mathrm{a}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{b}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{c}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} +\:\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{d}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:−\:\mathrm{2}\right)\:−\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{taylors}\:\mathrm{theorem}? \\ $$
Answered by Frix last updated on 10/Apr/24
x^2 +2x+3  x=t−2  t^2 −2t+3  t=x+2  (x+2)^2 −2(x+2)+3
$${x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3} \\ $$$${x}={t}−\mathrm{2} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{3} \\ $$$${t}={x}+\mathrm{2} \\ $$$$\left({x}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}+\mathrm{2}\right)+\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *