Question Number 206232 by mr W last updated on 09/Apr/24
Answered by A5T last updated on 09/Apr/24
$${S}_{\mathrm{2}} ={S}_{\mathrm{1}} +{S}_{\mathrm{3}} −\mathrm{2}{AB}×{BCcos}\left(\theta\right) \\ $$$${S}_{\mathrm{1}} ={S}_{\mathrm{2}} +{S}_{\mathrm{3}} −\mathrm{2}{BC}×{ACcos}\left(\beta\right) \\ $$$${S}_{\mathrm{3}} ={S}_{\mathrm{2}} +{S}_{\mathrm{1}} +\mathrm{2}{AB}×{ACcos}\left(\theta+\beta\right) \\ $$$${S}_{\mathrm{4}} ={S}_{\mathrm{1}} +{S}_{\mathrm{2}} −\mathrm{2}{AB}×{ACcos}\left(\theta+\beta\right) \\ $$$${S}_{\mathrm{5}} ={S}_{\mathrm{3}} +{S}_{\mathrm{2}} +\mathrm{2}{AC}×{BCcos}\beta \\ $$$${S}_{\mathrm{6}} ={S}_{\mathrm{1}} +{S}_{\mathrm{3}} +\mathrm{2}{AB}×{BCcos}\theta \\ $$$$\Rightarrow{S}_{\mathrm{1}} +{S}_{\mathrm{2}} +…+{S}_{\mathrm{6}} =\mathrm{4}\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} \right) \\ $$$$\Rightarrow{S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{S}_{\mathrm{6}} =\mathrm{3}\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} \right)=\mathrm{30} \\ $$
Commented by mr W last updated on 09/Apr/24
$${great}! \\ $$
Answered by mr W last updated on 09/Apr/24
$${if}\:{S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} =\mathrm{10},\:{find}\:{S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{S}_{\mathrm{6}} =? \\ $$
Answered by mr W last updated on 10/Apr/24
Commented by mr W last updated on 10/Apr/24
$${f}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\mathrm{180}°−\gamma\right)={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\gamma \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma \\ $$$${f}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$${similarly} \\ $$$${e}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right) \\ $$$${d}^{\mathrm{2}} +{a}^{\mathrm{2}} =\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{d}^{\mathrm{2}} +{e}^{\mathrm{2}} +{f}^{\mathrm{2}} +{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{d}^{\mathrm{2}} +{e}^{\mathrm{2}} +{f}^{\mathrm{2}} =\mathrm{3}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{S}_{\mathrm{6}} =\mathrm{3}\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} \right)=\mathrm{30} \\ $$
Answered by TonyCWX08 last updated on 11/Apr/24
$$\frac{{S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{S}_{\mathrm{6}} }{{S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} }=\mathrm{3} \\ $$$$\frac{{S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{S}_{\mathrm{6}} }{\mathrm{10}}=\mathrm{3} \\ $$$${S}_{\mathrm{4}} +{S}_{\mathrm{5}} +{S}_{\mathrm{6}} =\mathrm{30} \\ $$