Menu Close

Does-anyone-know-how-this-works-I-have-d-x-2-cy-2-dy-And-my-physics-teacher-says-it-is-or-can-be-a-harmonic-function-0-Can-anyone-explain-




Question Number 206273 by EmGent last updated on 10/Apr/24
Does anyone know how this works ?    I have dψ = (x^2 -cy^2 )dy    And my physics teacher says it is (or can  be) a harmonic function (Δψ = 0)  Can anyone explain ?
$$\mathrm{Does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{how}\:\mathrm{this}\:\mathrm{works}\:? \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:{d}\psi\:=\:\left({x}^{\mathrm{2}} -{cy}^{\mathrm{2}} \right){dy} \\ $$$$ \\ $$$$\mathrm{And}\:\mathrm{my}\:\mathrm{physics}\:\mathrm{teacher}\:\mathrm{says}\:\mathrm{it}\:\mathrm{is}\:\left(\mathrm{or}\:\mathrm{can}\right. \\ $$$$\left.\mathrm{be}\right)\:\mathrm{a}\:\mathrm{harmonic}\:\mathrm{function}\:\left(\Delta\psi\:=\:\mathrm{0}\right) \\ $$$$\mathrm{Can}\:\mathrm{anyone}\:\mathrm{explain}\:? \\ $$
Answered by aleks041103 last updated on 11/Apr/24
Since ∃dψ, then  dψ = (∂ψ/∂x)dx + (∂ψ/∂y)dy = (x^2 −cy^2 )dy  ⇒ { ((∂_x ψ = 0)),((∂_y ψ = x^2 −cy^2 )) :}  it is obvious that ∂_x ψ,∂_y ψ are continuous.  ⇒ψ∈C^1   Also it is easily seen that ∃∂_x ^( 2) ψ,∂_x ∂_y ψ,∂_y ∂_x ψ,∂_y ^( 2) ψ.  So, ψ is twice differentiable and is once  continously differentiable.  Therefore Schwartz rule applies:  (∂^2 ψ/(∂x∂y)) = (∂^2 ψ/(∂y∂x))  BUT  (∂^2 ψ/(∂x∂y)) = (∂/∂x)((∂ψ/∂y))=(∂/∂x)(x^2 −cy^2 )=2x  (∂^2 ψ/(∂y∂x)) = (∂/∂y)((∂ψ/∂x))=(∂/∂y)(0)=0  BUT  2x≠0  ⇒ ∄ψ: dψ=(x^2 −cy^2 )dy    Therefore, such ψ cannot be harmonic,  since such ψ doesn′t exist.
$${Since}\:\exists{d}\psi,\:{then} \\ $$$${d}\psi\:=\:\frac{\partial\psi}{\partial{x}}{dx}\:+\:\frac{\partial\psi}{\partial{y}}{dy}\:=\:\left({x}^{\mathrm{2}} −{cy}^{\mathrm{2}} \right){dy} \\ $$$$\Rightarrow\begin{cases}{\partial_{{x}} \psi\:=\:\mathrm{0}}\\{\partial_{{y}} \psi\:=\:{x}^{\mathrm{2}} −{cy}^{\mathrm{2}} }\end{cases} \\ $$$${it}\:{is}\:{obvious}\:{that}\:\partial_{{x}} \psi,\partial_{{y}} \psi\:{are}\:{continuous}. \\ $$$$\Rightarrow\psi\in{C}^{\mathrm{1}} \\ $$$${Also}\:{it}\:{is}\:{easily}\:{seen}\:{that}\:\exists\partial_{{x}} ^{\:\mathrm{2}} \psi,\partial_{{x}} \partial_{{y}} \psi,\partial_{{y}} \partial_{{x}} \psi,\partial_{{y}} ^{\:\mathrm{2}} \psi. \\ $$$${So},\:\psi\:{is}\:{twice}\:{differentiable}\:{and}\:{is}\:{once} \\ $$$${continously}\:{differentiable}. \\ $$$${Therefore}\:{Schwartz}\:{rule}\:{applies}: \\ $$$$\frac{\partial^{\mathrm{2}} \psi}{\partial{x}\partial{y}}\:=\:\frac{\partial^{\mathrm{2}} \psi}{\partial{y}\partial{x}} \\ $$$${BUT} \\ $$$$\frac{\partial^{\mathrm{2}} \psi}{\partial{x}\partial{y}}\:=\:\frac{\partial}{\partial{x}}\left(\frac{\partial\psi}{\partial{y}}\right)=\frac{\partial}{\partial{x}}\left({x}^{\mathrm{2}} −{cy}^{\mathrm{2}} \right)=\mathrm{2}{x} \\ $$$$\frac{\partial^{\mathrm{2}} \psi}{\partial{y}\partial{x}}\:=\:\frac{\partial}{\partial{y}}\left(\frac{\partial\psi}{\partial{x}}\right)=\frac{\partial}{\partial{y}}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${BUT}\:\:\mathrm{2}{x}\neq\mathrm{0} \\ $$$$\Rightarrow\:\nexists\psi:\:{d}\psi=\left({x}^{\mathrm{2}} −{cy}^{\mathrm{2}} \right){dy} \\ $$$$ \\ $$$${Therefore},\:{such}\:\psi\:{cannot}\:{be}\:{harmonic}, \\ $$$${since}\:{such}\:\psi\:{doesn}'{t}\:{exist}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *