Menu Close

f-x-log-2-x-2-x-4-f-1-13-4-3-




Question Number 206253 by mnjuly1970 last updated on 10/Apr/24
            f(x)= log_( 2)  ( x + 2(√x) +4 )         ⇒  f^( −1) ( 13 −4(√3) ) = ?         −−−−−
f(x)=log2(x+2x+4)f1(1343)=?
Answered by cortano21 last updated on 10/Apr/24
    ^(−1) (13−4(√3) )= s ⇒f(s)= 13−4(√3)    ⇒log _2 (((√s) )^2 +2(√s) + 4) = 13−4(√3)   ⇒ log _2 (((√s) +1)^2 +3) = 13−4(√3)   ⇒ ((√s) +1)^2 +3 = 2^(13−4(√3))    ⇒ (√s) +1 = (√(2^(13−4(√3)) −3))          s = ((√(2^(13−4(√3)) −3)) −1)^2
1(1343)=sf(s)=1343log2((s)2+2s+4)=1343log2((s+1)2+3)=1343(s+1)2+3=21343s+1=213433s=(2134331)2
Answered by A5T last updated on 10/Apr/24
log_2 [(−1+(√(2^x −3)))^2 +2(−1+(√(2^x −3)))+4]  =log_2 (2^x )=x  ⇒f[(−1+(√(2^x −3)))^2 ]=x⇒f^(−1) (x)=(−1+(√(2^x −3)))^2   ⇒f^(−1) (13−4(√3))=(−1+(√(2^(13−4(√3)) −3)))^2   =2^(13−4(√3)) −2−2(√(2^(13−4(√3)) −3))
log2[(1+2x3)2+2(1+2x3)+4]=log2(2x)=xf[(1+2x3)2]=xf1(x)=(1+2x3)2f1(1343)=(1+213433)2=2134322213433

Leave a Reply

Your email address will not be published. Required fields are marked *