Menu Close

expression-of-the-sequence-a-n-defined-by-a-0-gt-0-a-1-gt-0-a-n-2-2-1-n-n-2-2-1-n-2n-3-n-2-a-n-1-n-1-n-2-a-n-




Question Number 206351 by MetaLahor1999 last updated on 12/Apr/24
expression of the sequence (a_n ) defined  by    { ((a_0 >0 , a_1 >0)),((a_(n+2) =((2(−1)^n )/(n+2))−((2(−1)^n (2n+3))/(n+2))a_(n+1) +((n+1)/(n+2))a_n )) :}
expressionofthesequence(an)definedby{a0>0,a1>0an+2=2(1)nn+22(1)n(2n+3)n+2an+1+n+1n+2an
Commented by TheHoneyCat last updated on 12/Apr/24
⇔ { ((a_0 >0 , a_1 >0)),((a_(n+2) =((2(−1)^n (1−2n−3))/(n+2))a_(n+1) +((n+1)/(n+2))a_n )) :}  ⇔ { ((a_0 >0 , a_1 >0)),((a_(n+2) =((4(−1)^(n+1) (n+1))/(n+2))a_(n+1) +((n+1)/(n+2))a_n )) :}  ⇔ { ((a_0 >0 , a_1 >0)),((a_(n+2) =((n+1)/(n+2))(4(−1)^(n+1) a_(n+1) +a_n ))) :}  It is not a solution in any way...  it′s just that I think this reformulation might  make it easier...  I might continue to work on it tomorow...  good luck to anyone attempting.
{a0>0,a1>0an+2=2(1)n(12n3)n+2an+1+n+1n+2an{a0>0,a1>0an+2=4(1)n+1(n+1)n+2an+1+n+1n+2an{a0>0,a1>0an+2=n+1n+2(4(1)n+1an+1+an)ItisnotasolutioninanywayitsjustthatIthinkthisreformulationmightmakeiteasierImightcontinuetoworkonittomorowgoodlucktoanyoneattempting.

Leave a Reply

Your email address will not be published. Required fields are marked *