Menu Close

Number-series-a-3-2a-b-6-a-9-a-b-5-a-15-3a-b-7-Find-a-




Question Number 206365 by hardmath last updated on 12/Apr/24
Number series:  a_3  = 2a + b − 6  a_9  = a + b + 5  a_(15)  = 3a + b − 7  Find:   a = ?
Numberseries:a3=2a+b6a9=a+b+5a15=3a+b7Find:a=?
Commented by A5T last updated on 12/Apr/24
Arithmetic progression? Is a the first term?
Arithmeticprogression?Isathefirstterm?
Commented by hardmath last updated on 12/Apr/24
yes, arithmetic
yes,arithmetic
Commented by A5T last updated on 12/Apr/24
Is a the first term?
Isathefirstterm?
Commented by hardmath last updated on 12/Apr/24
yes dear ser
yesdearser
Answered by A5T last updated on 12/Apr/24
a_(15) −a_3 =a−1=12d  a_3 −a_9 =a−11=−6d  ⇒18d=10⇒d=(5/9)⇒a=((23)/3)  a_3 =a+2d=((79)/9)=((46)/3)−6+b⇒b=((−5)/9)  ⇒a_3 =((79)/9),a_9 =((109)/9);a_(15) =((139)/9)  a_n =((64+5n)/9)
a15a3=a1=12da3a9=a11=6d18d=10d=59a=233a3=a+2d=799=4636+bb=59a3=799,a9=1099;a15=1399an=64+5n9
Answered by Rasheed.Sindhi last updated on 13/Apr/24
a_n  is an AP (given)  ∵  3,9,15 are inAP  ∴ a_3 ,a_9 ,a_(15 ) are also in AP  ∴ a_9 =((a_3 +a_(15) )/2)  a + b + 5=((5a+2b−13)/2)  5a+2b−13=2a+2b+10  3a=23  a=((23)/3)
anisanAP(given)3,9,15areinAPa3,a9,a15arealsoinAPa9=a3+a152a+b+5=5a+2b1325a+2b13=2a+2b+103a=23a=233

Leave a Reply

Your email address will not be published. Required fields are marked *