Menu Close

sin-pi-7-sin-2pi-7-sin-3pi-7-




Question Number 206362 by MATHEMATICSAM last updated on 12/Apr/24
sin(π/7) × sin((2π)/7) × sin((3π)/7) = ?
$$\mathrm{sin}\frac{\pi}{\mathrm{7}}\:×\:\mathrm{sin}\frac{\mathrm{2}\pi}{\mathrm{7}}\:×\:\mathrm{sin}\frac{\mathrm{3}\pi}{\mathrm{7}}\:=\:? \\ $$
Answered by Skabetix last updated on 12/Apr/24
=((√7)/8)
$$=\frac{\sqrt{\mathrm{7}}}{\mathrm{8}} \\ $$
Answered by Berbere last updated on 13/Apr/24
sin((π/7))=sin(((6π)/7));sin(((2π)/7))=sin(((5π)/7));sin(((3π)/7))=sin(((4π)/7))  Z^7 −1=Π_(k=0) ^6 (Z−e^((2ikπ)/7) )  ((Z^7 −1)/(Z−1))=Π_(k=1) ^6 (Z−e^((2ikπ)/7) )=Σz^k   z=1,z−e^((2ikπ)/7) =−e^((ikπ)/7) .2isin(((kπ)/7))  ⇒(−2i)^6 .e^(3iπ) Πsin(((kπ)/7))=6⇒Π_(k=1) ^6 sin(((kπ)/7))=(7/(64))  sin((π/7))sin(((3π)/7))sin(((5π)/7))=(√(7/(64)))=((√7)/8)
$${sin}\left(\frac{\pi}{\mathrm{7}}\right)={sin}\left(\frac{\mathrm{6}\pi}{\mathrm{7}}\right);{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)={sin}\left(\frac{\mathrm{5}\pi}{\mathrm{7}}\right);{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)={sin}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right) \\ $$$${Z}^{\mathrm{7}} −\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{6}} {\prod}}\left({Z}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{7}}} \right) \\ $$$$\frac{{Z}^{\mathrm{7}} −\mathrm{1}}{{Z}−\mathrm{1}}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{6}} {\prod}}\left({Z}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{7}}} \right)=\Sigma{z}^{{k}} \\ $$$${z}=\mathrm{1},{z}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{7}}} =−{e}^{\frac{{ik}\pi}{\mathrm{7}}} .\mathrm{2}{isin}\left(\frac{{k}\pi}{\mathrm{7}}\right) \\ $$$$\Rightarrow\left(−\mathrm{2}{i}\right)^{\mathrm{6}} .{e}^{\mathrm{3}{i}\pi} \Pi{sin}\left(\frac{{k}\pi}{\mathrm{7}}\right)=\mathrm{6}\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\mathrm{6}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{7}}\right)=\frac{\mathrm{7}}{\mathrm{64}} \\ $$$${sin}\left(\frac{\pi}{\mathrm{7}}\right){sin}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right){sin}\left(\frac{\mathrm{5}\pi}{\mathrm{7}}\right)=\sqrt{\frac{\mathrm{7}}{\mathrm{64}}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{8}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *