Question Number 206391 by hardmath last updated on 13/Apr/24
$$\mathrm{Find}: \\ $$$$\int_{−\mathrm{3}} ^{\:−\mathrm{2}} \:\left(\mid\mathrm{x}\mid\:+\:\mid\mathrm{x}\:−\:\mathrm{4}\mid\right)\:\mathrm{dx}\:=\:? \\ $$
Answered by MM42 last updated on 13/Apr/24
$${I}=\int_{−\mathrm{3}} ^{−\mathrm{2}} \left(−\mathrm{2}{x}+\mathrm{4}\right){dx} \\ $$$$\left.=\left(−{x}^{\mathrm{2}} +\mathrm{4}{x}\right)\right]_{−\mathrm{3}} ^{−\mathrm{2}} =−\mathrm{12}+\mathrm{21}=\mathrm{9}\checkmark \\ $$$$ \\ $$
Answered by TonyCWX08 last updated on 13/Apr/24
$$\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\int}}\left(\mid{x}\mid+\mid{x}−\mathrm{4}\mid\right){dx} \\ $$$$=\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\int}}\left(\mid{x}\mid\right){dx}\:+\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\int}}\left(\mid{x}−\mathrm{4}\mid\right){dx} \\ $$$$=\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\int}}\left(−{x}\right){dx}\:+\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\int}}−\left({x}−\mathrm{4}\right){dx} \\ $$$$=\left[−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\right]}}+\left[−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{4}{x}\underset{−\mathrm{3}} {\overset{−\mathrm{2}} {\right]}} \\ $$$$=\left(−\mathrm{2}+\frac{\mathrm{9}}{\mathrm{2}}\right)+\left(−\mathrm{10}+\frac{\mathrm{33}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$=\mathrm{9} \\ $$
Commented by hardmath last updated on 13/Apr/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professors}\:\mathrm{cool} \\ $$