Menu Close

If-tanp-ptan-then-prove-that-sin-2-p-sin-2-p-2-1-p-2-1-sin-2-




Question Number 206421 by MATHEMATICSAM last updated on 13/Apr/24
If tanpθ = ptanθ then prove that  ((sin^2 pθ)/(sin^2 θ)) = (p^2 /(1 + (p^2  − 1)sin^2 θ)) .
Iftanpθ=ptanθthenprovethatsin2pθsin2θ=p21+(p21)sin2θ.
Answered by Frix last updated on 13/Apr/24
tan pθ =ptan θ =t  ⇔  pθ=tan^(−1)  t ∧θ=tan^(−1)  (t/p)  ⇒  sin^2  pθ =(t^2 /(t^2 +1))∧sin^2  θ =(t^2 /(t^2 +p^2 ))  ((t^2 /(t^2 +1))/(t^2 /(t^2 +p^2 )))=(p^2 /(1+(p^2 −1)(t^2 /(t^2 +p^2 )))) which is true
tanpθ=ptanθ=tpθ=tan1tθ=tan1tpsin2pθ=t2t2+1sin2θ=t2t2+p2t2t2+1t2t2+p2=p21+(p21)t2t2+p2whichistrue

Leave a Reply

Your email address will not be published. Required fields are marked *