If-tanp-ptan-then-prove-that-sin-2-p-sin-2-p-2-1-p-2-1-sin-2- Tinku Tara April 13, 2024 Trigonometry 0 Comments FacebookTweetPin Question Number 206421 by MATHEMATICSAM last updated on 13/Apr/24 Iftanpθ=ptanθthenprovethatsin2pθsin2θ=p21+(p2−1)sin2θ. Answered by Frix last updated on 13/Apr/24 tanpθ=ptanθ=t⇔pθ=tan−1t∧θ=tan−1tp⇒sin2pθ=t2t2+1∧sin2θ=t2t2+p2t2t2+1t2t2+p2=p21+(p2−1)t2t2+p2whichistrue Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-3-2-x-x-4-dx-Next Next post: Question-206394 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.