Menu Close

If-tan-2-1-x-2-then-prove-that-sec-tan-3-cosec-2-x-2-3-




Question Number 206434 by MATHEMATICSAM last updated on 14/Apr/24
If tan^2 θ = 1 − x^2  then prove that  secθ + tan^3 θcosecθ = (√((2 − x^2 )^3 )) .
Iftan2θ=1x2thenprovethatsecθ+tan3θcosecθ=(2x2)3.
Answered by TonyCWX08 last updated on 14/Apr/24
secθ+tan^3 θ(((secθ)/(tanθ)))  =secθ+secθtan^2 θ  =secθ(1+1−x^2 )  =(√((1+tan^2 θ)))(2−x^2 )  =(√((2−x^2 )))(2−x^2 )  =(√((2−x^2 )^3 ))  Hence Proved.
secθ+tan3θ(secθtanθ)=secθ+secθtan2θ=secθ(1+1x2)=(1+tan2θ)(2x2)=(2x2)(2x2)=(2x2)3HenceProved.

Leave a Reply

Your email address will not be published. Required fields are marked *