Menu Close

let-f-0-R-be-a-continuous-function-if-lim-n-0-1-f-x-n-dx-2-then-lim-n-f-nx-




Question Number 206433 by universe last updated on 14/Apr/24
     let f:[0,∞)→R be a continuous function if      lim_(n→∞ )  ∫_0 ^1 f(x+n)dx = 2   then lim_(n→∞)  f(nx) = ?
$$\:\:\:\:\:\mathrm{let}\:\mathrm{f}:\left[\mathrm{0},\infty\right)\rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{if} \\ $$$$\:\:\:\:\underset{\mathrm{n}\rightarrow\infty\:} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}+\mathrm{n}\right)\mathrm{dx}\:=\:\mathrm{2} \\ $$$$\:\mathrm{then}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{nx}\right)\:=\:? \\ $$$$\: \\ $$
Answered by Berbere last updated on 14/Apr/24
∫_0 ^1 f(x+n)dx=^(x+n=y) ∫_n ^(1+n) f(y)dy=2  if lim_(x→∞) f(x) existe let a=lim_(x→∞) f(x)  ⇒∀ε>0 ∃N such that ∀ x>N  a−ε≤f(x)≤a+ε  ⇒a−ε≤∫_n ^(n+1) f(x)≤a+ε;∀n>N  ⇒lim_(n→∞) ∫_n ^(n+1) f(x)dx=a=2  then lim_(n→∞) f(nx)= { ((f(0) if x=0)),((2 ∀x>0)) :}
$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}+{n}\right){dx}\overset{{x}+{n}={y}} {=}\int_{{n}} ^{\mathrm{1}+{n}} {f}\left({y}\right){dy}=\mathrm{2} \\ $$$${if}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)\:{existe}\:{let}\:{a}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right) \\ $$$$\Rightarrow\forall\epsilon>\mathrm{0}\:\exists{N}\:{such}\:{that}\:\forall\:{x}>{N}\:\:{a}−\epsilon\leqslant{f}\left({x}\right)\leqslant{a}+\epsilon \\ $$$$\Rightarrow{a}−\epsilon\leqslant\int_{{n}} ^{{n}+\mathrm{1}} {f}\left({x}\right)\leqslant{a}+\epsilon;\forall{n}>{N} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{{n}} ^{{n}+\mathrm{1}} {f}\left({x}\right){dx}={a}=\mathrm{2} \\ $$$${then}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}\left({nx}\right)=\begin{cases}{{f}\left(\mathrm{0}\right)\:{if}\:{x}=\mathrm{0}}\\{\mathrm{2}\:\forall{x}>\mathrm{0}}\end{cases} \\ $$$$ \\ $$$$ \\ $$
Commented by aleks041103 last updated on 14/Apr/24
f is continious ⇏ ∃lim_(x→∞)  f(x)  example: f(x)=sin(x), ∄lim f(x)_(x→∞)   therefore your solution is wrong
$${f}\:{is}\:{continious}\:\nRightarrow\:\exists\underset{{x}\rightarrow\infty} {{lim}}\:{f}\left({x}\right) \\ $$$${example}:\:{f}\left({x}\right)={sin}\left({x}\right),\:\underset{{x}\rightarrow\infty} {\nexists{lim}\:{f}\left({x}\right)} \\ $$$${therefore}\:{your}\:{solution}\:{is}\:{wrong} \\ $$
Commented by Berbere last updated on 14/Apr/24
yes you right i dont why i said That
$${yes}\:{you}\:{right}\:{i}\:{dont}\:{why}\:{i}\:{said}\:{That} \\ $$
Answered by Berbere last updated on 14/Apr/24
f(x)=2+cos(2πx)  ∫_0 ^1 (2+cos(2πx))=2 no limite
$${f}\left({x}\right)=\mathrm{2}+{cos}\left(\mathrm{2}\pi{x}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}+{cos}\left(\mathrm{2}\pi{x}\right)\right)=\mathrm{2}\:{no}\:{limite}\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *