Question Number 206473 by hardmath last updated on 15/Apr/24
$$\mathrm{If}\:\:\:\mathrm{4}^{\boldsymbol{\mathrm{p}}} \:=\:\mathrm{5} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{2}^{\mathrm{3}\boldsymbol{\mathrm{p}}} \:=\:? \\ $$
Answered by A5T last updated on 15/Apr/24
$$\mathrm{2}^{\mathrm{2}{p}} =\mathrm{5}\Rightarrow\mathrm{2}^{\mathrm{3}{p}} =\sqrt{\mathrm{125}} \\ $$$$ \\ $$$${p}=\frac{{log}_{\mathrm{2}} \mathrm{5}}{\mathrm{2}}\Rightarrow\mathrm{2}^{\mathrm{3}{p}} =\mathrm{2}^{{log}_{\mathrm{2}} \left(\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)} =\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} =\sqrt{\mathrm{125}}=\mathrm{5}\sqrt{\mathrm{5}} \\ $$
Commented by hardmath last updated on 15/Apr/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{professor}\: \\ $$
Answered by Rasheed.Sindhi last updated on 15/Apr/24
$$\mathrm{2}^{\mathrm{3p}} =\left(\mathrm{2}^{\mathrm{2}} \right)^{\frac{\mathrm{3p}}{\mathrm{2}}} =\left(\mathrm{4}^{\mathrm{p}} \right)^{\mathrm{3}/\mathrm{2}} =\mathrm{5}^{\mathrm{3}/\mathrm{2}} =\sqrt{\mathrm{125}}\:=\mathrm{5}\sqrt{\mathrm{5}} \\ $$
Answered by BaliramKumar last updated on 16/Apr/24
$$\mathrm{2}^{\mathrm{2p}} \:=\:\mathrm{5}\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\mathrm{2}\:=\:\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2p}}} \\ $$$$\mathrm{2}^{\mathrm{3p}} \:=\:\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2p}}} \right)^{\mathrm{3p}} \:=\:\mathrm{5}^{\frac{\mathrm{3p}}{\mathrm{2p}}} \:=\:\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} \:=\:\mathrm{5}\sqrt{\mathrm{5}} \\ $$
Answered by Skabetix last updated on 16/Apr/24
$$\left(\mathrm{2}^{\mathrm{2}} \right)^{{p}} =\mathrm{5} \\ $$$$\Leftrightarrow\:\mathrm{2}^{\mathrm{2}{p}} =\mathrm{5} \\ $$$$\Leftrightarrow\left(\mathrm{2}^{\mathrm{2}{p}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\Leftrightarrow\mathrm{2}^{\mathrm{2}{p}×\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\Leftrightarrow\mathrm{2}^{\mathrm{3}{p}} =\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{5}\sqrt{\mathrm{5}} \\ $$