Menu Close

If-asin-bcos-2ctan-1-tan-2-then-prove-that-a-2-b-2-2-4c-2-a-2-b-2-




Question Number 206471 by MATHEMATICSAM last updated on 15/Apr/24
If asinθ = bcosθ = ((2ctanθ)/(1 − tan^2 θ)) then prove  that (a^2  − b^2 )^2  = 4c^2 (a^2  + b^2 ).
Ifasinθ=bcosθ=2ctanθ1tan2θthenprovethat(a2b2)2=4c2(a2+b2).
Answered by lepuissantcedricjunior last updated on 15/Apr/24
asin𝛉=((2c tan𝛉)/(1−tan^2 𝛉))=ctan2𝛉=((2csin𝛉cos𝛉)/(2cos^2 𝛉−1))=bcos𝛉  ⇔a=((2ccos𝛉)/(2cos^2 𝛉−1));b=((2csin𝛉)/(2cos^2 𝛉−1))  on a   (a^2 −b^2 )^2 =(((4c^2 cos2𝛉)/((2cos^2 𝛉−1)^2 )))^2 =16c^4 (((cos2𝛉)/(cos^2 (2𝛉))))^2   ⇒(a^2 −b^2 )^2 =16c^4 ((1/(cos^2 (2𝛉))))                           =16c^4 [(1/(4c^2 )) (((4c^2 sin^2 𝛉)/(cos^2 (2𝛉)))+((4c^2 cos^2 𝛉)/(cos^2 (2𝛉))) )]                =4c^2 (a^2 +b^2 )  ⇒(a^2 −b^2 )^2 =4c^2 (a^2 +b^2 )  .........le puissant cedric junior.....
asinθ=2ctanθ1tan2θ=ctan2θ=2csinθcosθ2cos2θ1=bcosθa=2ccosθ2cos2θ1;b=2csinθ2cos2θ1ona(a2b2)2=(4c2cos2θ(2cos2θ1)2)2=16c4(cos2θcos2(2θ))2(a2b2)2=16c4(1cos2(2θ))=16c4[14c2(4c2sin2θcos2(2θ)+4c2cos2θcos2(2θ))]=4c2(a2+b2)(a2b2)2=4c2(a2+b2)lepuissantcedricjunior..

Leave a Reply

Your email address will not be published. Required fields are marked *