Question-206522 Tinku Tara April 17, 2024 None 0 Comments FacebookTweetPin Question Number 206522 by MrGHK last updated on 17/Apr/24 Answered by Berbere last updated on 17/Apr/24 u′=xln2(x)⇒u=12(x2ln2(x)−x2ln(x)+x22)v=Li2(1+xx);v′=−1x2.−ln(−1x)1+xx=−ln(−x)x(1+x)IBP=12[(x2ln2(x)−x22ln(x)+x22)Li2(1+xx)]01+12∫01x1+xln(−x)(xln2(x)−xln(x)+x2)dx“Li2(z)+Li2(1−1z)=−(ln(z))22″⇒Li2(1+zz)=Li2(−z)−12(ln(−z))2⇒limx→0xLi2(1+xx)=0A=14Li2(2)+12∫01x2ln2(x)ln(−x)1+x−12∫01x2ln(x)ln(−x)1+xdx+14∫01x21+xln(−x)dxln(−x)=ln(x)+iπ∫01x2lnn(x)ln(−x)1+xdx=∫01x2lnn+1(x)1+xdx+iπ∫01x2lnn(x)dx1+x=∫01x2lnm(x)1+x=∑n⩾0(−1)nxn+2lnm(x)dx=H(m)=∑n⩾0(−1)n∫01xn+2lnm(x)=∑n⩾0(−1)n∫0∞(−t)me−(n+2)tdt=(−1)m∑n⩾0(−1)nΓ(m+1)(n+2)m+1=(−1)mm!(∑n⩾0(−1)n+2(n+2)m+1)=(−1)mm!(∑n⩾1(−1)nnm+1+1)∑n⩾1(−1)nnm+1=(1−12m)ζ(m+1);∀m⩾1H=(−1)mm!((1−12m)ζ(m+1)+1)A=Li2(2)4+12∫01x2ln3(x)1+x+iπ2∫01x2ln2(x)1+xdx−12∫01x2ln2(x)1+x+12∫01x2iπln(x)1+xdx+14∫01x2ln(x)1+xdx+iπ4∫01x21+xdx=Li2(2)4+12H(3)−H(2)2+14H(1)+iπ2(H(2)+H(1))+iπ2∫01x21+xdxeasyTocontinue Commented by MrGHK last updated on 18/Apr/24 thankssirNicesolution Commented by Berbere last updated on 18/Apr/24 withePleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: In-this-covid-19-pandemic-it-is-known-that-are-5-667-355-confirmed-cases-out-of-273-500-000-in-X-country-population-based-WHO-One-of-the-equipment-to-test-the-covid-19-is-GeNose-C19-S-deveNext Next post: Question-206511 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.