Menu Close

Question-206522




Question Number 206522 by MrGHK last updated on 17/Apr/24
Answered by Berbere last updated on 17/Apr/24
u′=xln^2 (x)⇒u=(1/2)(x^2 ln^2 (x)−x^2 ln(x)+(x^2 /2))  v=Li_2 (((1+x)/x));v′=−(1/x^2 ).−((ln(−(1/x)))/((1+x)/x))=−((ln(−x))/(x(1+x)))  IBP  =(1/2)[(x^2 ln^2 (x)−(x^2 /2)ln(x)+(x^2 /2))Li_2 (((1+x)/x))]_0 ^1   +(1/2)∫_0 ^1 (x/(1+x))ln(−x)(xln^2 (x)−xln(x)+(x/2))dx  “Li_2 (z)+Li_2 (1−(1/z))=−(((ln(z))^2 )/2) ”  ⇒Li_2 (((1+z)/z))=Li_2 (−z)−(1/2)(ln(−z))^2 ⇒lim_(x→0) xLi_2 (((1+x)/x))=0  A=(1/4)Li_2 (2)+(1/2)∫_0 ^1 ((x^2 ln^2 (x)ln(−x))/(1+x))−(1/2)∫_0 ^1 ((x^2 ln(x)ln(−x))/(1+x))dx  +(1/4)∫_0 ^1 (x^2 /(1+x))ln(−x)dx  ln(−x)=ln(x)+iπ  ∫_0 ^1 ((x^2 ln^n (x)ln(−x))/(1+x))dx  =∫_0 ^1 ((x^2 ln^(n+1) (x))/(1+x))dx+iπ∫_0 ^1 ((x^2 ln^n (x)dx)/(1+x))=  ∫_0 ^1 ((x^2 ln^m (x))/(1+x))=Σ_(n≥0) (−1)^n x^(n+2) ln^m (x)dx=H(m)  =Σ_(n≥0) (−1)^n ∫_0 ^1 x^(n+2) ln^m (x)=Σ_(n≥0) (−1)^n ∫_0 ^∞ (−t)^m e^(−(n+2)t) dt  =(−1)^m Σ_(n≥0) (((−1)^n Γ(m+1))/((n+2)^(m+1) ))=(−1)^m m!(Σ_(n≥0) (((−1)^(n+2) )/((n+2)^(m+1) )))  =(−1)^m m!(Σ_(n≥1) (((−1)^n )/n^(m+1) )+1)  Σ_(n≥1) (((−1)^n )/n^(m+1) )=(1−(1/2^m ))ζ(m+1);∀m≥1  H=(−1)^m m!((1−(1/2^m ))ζ(m+1)+1)  A=((Li_2 (2))/4)+(1/2)∫_0 ^1 ((x^2 ln^3 (x))/(1+x))+((iπ)/2)∫_0 ^1 ((x^2 ln^2 (x))/(1+x))dx−(1/2)∫_0 ^1 ((x^2 ln^2 (x))/(1+x))+(1/2)∫_0 ^1 x^2 ((iπln(x))/(1+x))dx  +(1/4)∫_0 ^1 ((x^2 ln(x))/(1+x))dx+((iπ)/4)∫_0 ^1 (x^2 /(1+x)) dx   =((Li_2 (2))/4)+(1/2)H(3)−((H(2))/2)+(1/4)H(1)+((iπ)/2)(H(2)+H(1))  +i(π/2)∫_0 ^1 (x^2 /(1+x))dx easy To continue
u=xln2(x)u=12(x2ln2(x)x2ln(x)+x22)v=Li2(1+xx);v=1x2.ln(1x)1+xx=ln(x)x(1+x)IBP=12[(x2ln2(x)x22ln(x)+x22)Li2(1+xx)]01+1201x1+xln(x)(xln2(x)xln(x)+x2)dxLi2(z)+Li2(11z)=(ln(z))22Li2(1+zz)=Li2(z)12(ln(z))2limx0xLi2(1+xx)=0A=14Li2(2)+1201x2ln2(x)ln(x)1+x1201x2ln(x)ln(x)1+xdx+1401x21+xln(x)dxln(x)=ln(x)+iπ01x2lnn(x)ln(x)1+xdx=01x2lnn+1(x)1+xdx+iπ01x2lnn(x)dx1+x=01x2lnm(x)1+x=n0(1)nxn+2lnm(x)dx=H(m)=n0(1)n01xn+2lnm(x)=n0(1)n0(t)me(n+2)tdt=(1)mn0(1)nΓ(m+1)(n+2)m+1=(1)mm!(n0(1)n+2(n+2)m+1)=(1)mm!(n1(1)nnm+1+1)n1(1)nnm+1=(112m)ζ(m+1);m1H=(1)mm!((112m)ζ(m+1)+1)A=Li2(2)4+1201x2ln3(x)1+x+iπ201x2ln2(x)1+xdx1201x2ln2(x)1+x+1201x2iπln(x)1+xdx+1401x2ln(x)1+xdx+iπ401x21+xdx=Li2(2)4+12H(3)H(2)2+14H(1)+iπ2(H(2)+H(1))+iπ201x21+xdxeasyTocontinue
Commented by MrGHK last updated on 18/Apr/24
thanks sir Nice solution
thankssirNicesolution
Commented by Berbere last updated on 18/Apr/24
withe Pleasur
withePleasur

Leave a Reply

Your email address will not be published. Required fields are marked *