Menu Close

Question-206542




Question Number 206542 by luciferit last updated on 18/Apr/24
Answered by lepuissantcedricjunior last updated on 18/Apr/24
∫(3x+5)arctan(x)dx=k   { ((u=arctan(x))),((v′=(3x+5))) :}=> { ((u′=(1/(1+x^2 )))),((v=(3/2)x^2 +5x)) :}  k=((3/2)x^2 +5x)arctan(x)−(3/2)∫((x^2 +1+((10)/3)x−1)/(1+x^2 ))dx  k=((3/2)x^2 +5x)arctan(x)−(3/2)x −(5/2)ln(1+x^2 )+(3/2)arctan(x)+c  k=(3/2)(x^2 +((10)/3)x+1)arctan(x)−(3/2)x−(5/2)ln(1+x^2 )+c
$$\int\left(\mathrm{3}\boldsymbol{{x}}+\mathrm{5}\right)\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\boldsymbol{{k}} \\ $$$$\begin{cases}{\boldsymbol{{u}}=\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)}\\{\boldsymbol{{v}}'=\left(\mathrm{3}\boldsymbol{{x}}+\mathrm{5}\right)}\end{cases}=>\begin{cases}{\boldsymbol{{u}}'=\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}\\{\boldsymbol{{v}}=\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\boldsymbol{{x}}}\end{cases} \\ $$$$\boldsymbol{{k}}=\left(\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\boldsymbol{{x}}\right)\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{10}}{\mathrm{3}}\boldsymbol{{x}}−\mathrm{1}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$$$\boldsymbol{{k}}=\left(\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\boldsymbol{{x}}\right)\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)−\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{x}}\:−\frac{\mathrm{5}}{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)+\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{c}} \\ $$$$\boldsymbol{{k}}=\frac{\mathrm{3}}{\mathrm{2}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\frac{\mathrm{10}}{\mathrm{3}}\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)−\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{x}}−\frac{\mathrm{5}}{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)+\boldsymbol{{c}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *