Menu Close

Question-206543




Question Number 206543 by luciferit last updated on 18/Apr/24
Answered by lepuissantcedricjunior last updated on 18/Apr/24
∫((3+2(√x))/(4+(√x)))dx=∫((2(4+(√x))−5)/(4+(√x)))dx                         =2x−{5∫(dx/(4+(√x)))    x=t^2 ⇔dx=2tdt}            =2x−{10∫(1−(4/(4+t)))dt}            =2x−10(√x)+40ln(4+(√x))+c
$$\int\frac{\mathrm{3}+\mathrm{2}\sqrt{\boldsymbol{{x}}}}{\mathrm{4}+\sqrt{\boldsymbol{{x}}}}\boldsymbol{{dx}}=\int\frac{\mathrm{2}\left(\mathrm{4}+\sqrt{{x}}\right)−\mathrm{5}}{\mathrm{4}+\sqrt{\boldsymbol{{x}}}}\boldsymbol{{dx}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\boldsymbol{{x}}−\left\{\mathrm{5}\int\frac{\boldsymbol{{dx}}}{\mathrm{4}+\sqrt{\boldsymbol{{x}}}}\:\:\:\:\boldsymbol{{x}}=\boldsymbol{{t}}^{\mathrm{2}} \Leftrightarrow\boldsymbol{{dx}}=\mathrm{2}\boldsymbol{{tdt}}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\boldsymbol{{x}}−\left\{\mathrm{10}\int\left(\mathrm{1}−\frac{\mathrm{4}}{\mathrm{4}+\boldsymbol{{t}}}\right)\boldsymbol{{dt}}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\boldsymbol{{x}}−\mathrm{10}\sqrt{\boldsymbol{{x}}}+\mathrm{40}\boldsymbol{{ln}}\left(\mathrm{4}+\sqrt{\boldsymbol{{x}}}\right)+\boldsymbol{{c}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *