Question Number 206592 by NasaSara last updated on 19/Apr/24
Answered by namphamduc last updated on 20/Apr/24
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx}=\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx}−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx} \\ $$$${x}\rightarrow{x}^{\mathrm{2}} \Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx}=\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx}−\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{Let}\::\:{I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}−{a}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx},{I}\left(\mathrm{0}\right)=\mathrm{0},{I}\left(\mathrm{1}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$${I}'\left({a}\right)=−\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{a}}{{a}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}−{a}^{\mathrm{2}} }{dx}=−\frac{\pi}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }} \\ $$$$\Rightarrow{I}\left(\mathrm{1}\right)=−\pi\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}{da}=−\pi\mathrm{sin}^{−\mathrm{1}} \left({a}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} =−\pi.\frac{\pi}{\mathrm{2}}=−\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx}=\frac{\mathrm{1}}{\mathrm{3}}{I}\left(\mathrm{1}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{3}}=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}\right)}{{x}−\mathrm{1}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$
Commented by NasaSara last updated on 20/Apr/24
$${thank}\:{you} \\ $$
Answered by Berbere last updated on 20/Apr/24
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\mathrm{1}−{x}}{dx}=\frac{\partial}{\partial{s}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{s}} −\mathrm{1}}{{x}−\mathrm{1}}{dx}\mid_{{s}=\mathrm{0}} =\frac{\partial}{\partial{s}}.−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{s}} −\mathrm{1}}{\mathrm{1}−{x}}{dx} \\ $$$$=\frac{\partial}{\partial{s}}\Psi\left(\mathrm{1}+{s}\right)=\Psi'\left(\mathrm{1}+{s}\right)\mid_{{s}=\mathrm{0}} =\Psi^{\left(\mathrm{1}\right)} \left(\mathrm{1}\right)=\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$
Commented by NasaSara last updated on 20/Apr/24
$${thanks} \\ $$