Question Number 206616 by universe last updated on 20/Apr/24
Answered by aleks041103 last updated on 21/Apr/24
$${e}^{\mathrm{3}{x}} \:{is}\:{increasing}\:{and}\:{continuous}\:{for}\:{x}>\mathrm{0} \\ $$$${ln}\left({x}\right)\:{is}\:{incr}.\:{and}\:{cont}.\:{for}\:{x}>\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)\:{is}\:{incr}.\:{and}\:{cont}.\:{for}\:{x}>\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:{f}\left({x}\right)\rightarrow−\infty \\ $$$$\underset{{x}\rightarrow+\infty} {{lim}}\:{f}\left({x}\right)\rightarrow+\infty \\ $$$$\Rightarrow\exists{f}^{\:−\mathrm{1}} :\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({f}^{\:−\mathrm{1}} \left({x}\right)\right)={x} \\ $$$$\Rightarrow\left(\frac{{df}\left({y}\right)}{{dy}}\right)_{{y}={f}^{\:−\mathrm{1}} \left({x}\right)} \frac{{df}^{\:−\mathrm{1}} \left({x}\right)}{{dx}}\:=\:\mathrm{1}\:=\:\frac{{d}}{{dx}}{x} \\ $$$$\Rightarrow\frac{{d}\:{f}^{\:−\mathrm{1}} \left({x}\right)}{{dx}}\:=\:\frac{\mathrm{1}}{{f}\:'\left({f}^{\:−\mathrm{1}} \left({x}\right)\right)} \\ $$$${f}\:^{'} \left({x}\right)=\mathrm{3}{e}^{\mathrm{3}{x}} +\frac{\mathrm{1}}{{x}} \\ $$$$\Rightarrow{Df}^{\:−\mathrm{1}} \left({e}^{\mathrm{3}} \right)\:=\:\left(\mathrm{3}\:{e}^{\mathrm{3}{f}^{\:−\mathrm{1}} \left({e}^{\mathrm{3}} \right)} +\frac{\mathrm{1}}{{f}^{\:−\mathrm{1}} \left({e}^{\mathrm{3}} \right)}\right)^{−\mathrm{1}} \\ $$$${y}={f}^{\:−\mathrm{1}} \left({e}^{\mathrm{3}} \right)\Rightarrow{f}\left({y}\right)={e}^{\mathrm{3}{y}} +{ln}\left({y}\right)={e}^{\mathrm{3}} \\ $$$$\Rightarrow{y}=\mathrm{1}\:{is}\:{a}\:{soln}. \\ $$$${since}\:\exists!{y}:{f}\left({y}\right)={e}^{\mathrm{3}} \:\Rightarrow\:{y}=\mathrm{1}={f}^{\:−\mathrm{1}} \left({e}^{\mathrm{3}} \right) \\ $$$$\Rightarrow{Df}^{\:−\mathrm{1}} \left({e}^{\mathrm{3}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{3}{e}^{\mathrm{3}.\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}{e}^{\mathrm{3}} } \\ $$