Menu Close

find-lim-n-0-n-e-nx-arctan-x-n-dx-




Question Number 206730 by mathzup last updated on 23/Apr/24
find lim_(n→+∞) ∫_0 ^n e^(nx)  arctan((x/n))dx
findlimn+0nenxarctan(xn)dx
Commented by aleks041103 last updated on 24/Apr/24
More interesting is  lim_(n→∞)  ∫_0 ^( n) e^(−nx) arctan((x/n))dx = lim_(n→∞)  J_n     J_n = ∫_0 ^( n) e^(−nx) arctan((x/n))dx =   = ∫_0 ^( 1) ne^(−n^2 t) arctan(t)dt = ∫_0 ^( 1) f_n (t)dt  obviously if we fix t then:  lim_(n→∞)  f_n (t) = arctan(t)lim_(n→∞)  ne^(−n^2 t)  = 0   lim_(n→∞)  f_n (t)=0, t∈[0,1]  ⇒f_n →^([0,1])  0 pointwise    but also:  arctan(t)≤t for t∈[0,1]  ⇒0≤f_n (t)≤nte^(−n^2 t) =(1/n) (ae^(−a) ), a=n^2 t∈[0,n^2 ]⊂[0,∞)  ⇒f_n (t)≤(1/n)(ae^(−a) )≤(1/n)(sup_(a∈[0,n^2 ])  ae^(−a) )≤(1/n)(sup_(a≥0)  ae^(−a) )  but  g(a)=ae^(−a) ⇒g′=(1−a)e^(−a) =0⇒a=1  ⇒sup_(a≥0)  ae^(−a)  = g(1) = e^(−1)   ⇒0≤f_n (t)≤(1/(en)), t∈[0,1]  ⇒∥f_n ∥=sup_(t∈[0,1])  ∣f_n (t)∣≤(1/(en))  ⇒lim_(n→∞)  ∥f_n ∥=0  ⇒f_n ⇉^([0,1]) 0, i.e. uniformly  ⇒lim_(n→∞)  ∫_0 ^( 1) f_n (t)dt = ∫_0 ^( 1) [lim_(n→∞)  f_n (t)]dt=  =∫_0 ^( 1) 0dt=0  ⇒lim_(n→∞)  J_n =0  ⇒lim_(n→∞)  ∫_0 ^( n) e^(−nx) arctan((x/n))dx = 0
Moreinterestingislimn0nenxarctan(xn)dx=limnJnJn=0nenxarctan(xn)dx==01nen2tarctan(t)dt=01fn(t)dtobviouslyifwefixtthen:limnfn(t)=arctan(t)limnnen2t=0limnfn(t)=0,t[0,1]fn[0,1]0pointwisebutalso:arctan(t)tfort[0,1]0fn(t)nten2t=1n(aea),a=n2t[0,n2][0,)fn(t)1n(aea)1n(supa[0,n2]aea)1n(supa0aea)butg(a)=aeag=(1a)ea=0a=1supa0aea=g(1)=e10fn(t)1en,t[0,1]⇒∥fn∥=supt[0,1]fn(t)∣⩽1enlimnfn∥=0fn[0,1]0,i.e.uniformlylimn01fn(t)dt=01[limnfn(t)]dt==010dt=0limnJn=0limn0nenxarctan(xn)dx=0
Answered by aleks041103 last updated on 24/Apr/24
x=nt⇒dx=ndt  ⇒∫_0 ^( n) e^(nx) arctan(x/n)dx=∫_0 ^( 1) e^(n^2 t) arctan(t)ndt=I_n   but e^(n^2 t) ≥1 for t∈[0,1]  I_n =n∫_0 ^( 1) e^(n^2 t) arctan(t)dt≥n∫_0 ^( 1) arctan(t)dt=  =n{[t arctan(t)]_0 ^1 −∫_0 ^( 1) ((tdt)/(1+t^2 ))}=  =n{(π/4)−(1/2)[ln(1+t^2 )]_0 ^1 }=n((π/4)−((ln(2))/2))  but (π/4)>(3/4)=0.75 and (1/2)ln(2)<(1/2)=0.5  ⇒c=(π/4)−((ln(2))/2)>0.25>0  ⇒I_n >cn, c>0  ⇒since lim_(n→∞)  cn = +∞ then  lim_(n→∞)  I_n  = lim_(n→∞)  ∫_0 ^( n) e^(nx)  arctan((x/n))dx = +∞
x=ntdx=ndt0nenxarctan(x/n)dx=01en2tarctan(t)ndt=Inbuten2t1fort[0,1]In=n01en2tarctan(t)dtn01arctan(t)dt==n{[tarctan(t)]0101tdt1+t2}==n{π412[ln(1+t2)]01}=n(π4ln(2)2)butπ4>34=0.75and12ln(2)<12=0.5c=π4ln(2)2>0.25>0In>cn,c>0sincelimncn=+thenlimnIn=limn0nenxarctan(xn)dx=+

Leave a Reply

Your email address will not be published. Required fields are marked *