Question Number 206709 by Nimnim111118 last updated on 23/Apr/24
$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{missing}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|c|}{\:\mathrm{72}}&\hline{\mathrm{24}}&\hline{\:\:\mathrm{6}}\\{\:\mathrm{96}}&\hline{\mathrm{16}}&\hline{\mathrm{12}}\\{\mathrm{108}}&\hline{\:?}&\hline{\mathrm{18}}\\\hline\end{array} \\ $$$$\mathrm{A}.\mathrm{12}\:\:\:\:\:\:\mathrm{B}.\mathrm{16}\:\:\:\:\mathrm{C}.\mathrm{18}\:\:\:\:\:\:\mathrm{D}.\mathrm{20} \\ $$$$\mathrm{Please}\:\mathrm{help}… \\ $$
Commented by Frix last updated on 24/Apr/24
$$\mathrm{E}.\mathrm{42} \\ $$$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:{always}\:\mathrm{42}. \\ $$
Commented by Ghisom last updated on 24/Apr/24
how?
Commented by A5T last updated on 24/Apr/24
$${I}\:{guess}\:{he}'{s}\:{just}\:{joking}\:{and}\:{trying}\:{to}\:{point} \\ $$$${out}\:{these}\:{sort}\:{of}\:{questions}\:{are}\:{not}\:{actually} \\ $$$$“{objective}''. \\ $$
Commented by jihamine2301 last updated on 03/May/24
$$\mathrm{12}\:{cause}\:{first}\:{line}\:\frac{\mathrm{72}}{\mathrm{6}}=\mathrm{12}×\mathrm{2}=\mathrm{24} \\ $$$$\frac{\mathrm{96}}{\mathrm{12}}=\mathrm{8}×\mathrm{2}=\mathrm{16} \\ $$$$\frac{\mathrm{108}}{\mathrm{18}}=\mathrm{6}×\mathrm{2}=\mathrm{12} \\ $$
Answered by BaliramKumar last updated on 23/Apr/24
$$\mathrm{72}\:=\:\frac{\mathrm{24}}{\mathrm{2}}×\mathrm{6} \\ $$$$\mathrm{96}\:=\:\frac{\mathrm{16}}{\mathrm{2}}×\mathrm{12} \\ $$$$\mathrm{108}\:=\:\frac{{x}}{\mathrm{2}}×\mathrm{18}\:\:\:\:\:\:\:\Rightarrow\:\:\:\mathrm{108}\:=\:\mathrm{9}{x}\:\:\:\Rightarrow\:{x}\:=\:\mathrm{12}\:\:\:\:\:\:\:\: \\ $$
Commented by Nimnim111118 last updated on 23/Apr/24
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$
Answered by Ghisom last updated on 24/Apr/24
$$\mathrm{72}+\mathrm{24}+\mathrm{6}=\mathrm{102} \\ $$$$\mathrm{96}+\mathrm{16}+\mathrm{12}=\mathrm{102}+\mathrm{22} \\ $$$$\mathrm{108}+{x}+\mathrm{18}=\mathrm{102}+\mathrm{22}+\mathrm{22}\:\Rightarrow\:{x}=\mathrm{20} \\ $$
Answered by Frix last updated on 24/Apr/24
$${l}=\mathrm{number}\:\mathrm{of}\:\mathrm{line},\:\lambda:=\mathrm{9}−\frac{{l}\left({l}+\mathrm{5}\right)}{\mathrm{6}} \\ $$$${l}=\mathrm{1}\Rightarrow\:\lambda=\mathrm{8};\:\mathrm{72}−\mathrm{24}=\mathrm{6}\lambda=\mathrm{48} \\ $$$${l}=\mathrm{2}\:\Rightarrow\:\lambda=\frac{\mathrm{20}}{\mathrm{3}};\:\mathrm{96}−\mathrm{16}=\mathrm{12}\lambda=\mathrm{80} \\ $$$${l}=\mathrm{3}\:\Rightarrow\:\lambda=\mathrm{5};\:\mathrm{108}−{x}=\mathrm{18}\lambda=\mathrm{90}\:\Rightarrow\:{x}=\mathrm{18}\:\bigstar \\ $$$$ \\ $$$$…\mathrm{wait},\:\mathrm{now}\:\mathrm{where}'\mathrm{s}\:\mathrm{42}??? \\ $$$$\:\:\:\:\:\mathrm{72}+\mathrm{24}=\mathrm{96}+\mathrm{12}=\mathrm{108}+\mathrm{6}=\mathrm{114} \\ $$$$\:\:\:\:\:\mathrm{6}+\mathrm{6}=\mathrm{12}+\mathrm{6}=\mathrm{18}+\mathrm{6}=\mathrm{24} \\ $$$$\Rightarrow \\ $$$$\mathrm{Line}\:\mathrm{4}:\:\:\:\:\:\mid\mathrm{114}\mid\:\:?\:\:\mid\:\mathrm{24}\:\mid \\ $$$${l}=\mathrm{4}\:\Rightarrow\:\lambda=\mathrm{3};\:\mathrm{114}−{y}=\mathrm{24}\lambda=\mathrm{72}\:\Rightarrow\:{y}=\mathrm{42} \\ $$$$\mathrm{Ha}!\:\mathrm{I}\:\mathrm{knew}\:\mathrm{it}! \\ $$
Commented by Ghisom last updated on 24/Apr/24