Menu Close

Question-206804




Question Number 206804 by mr W last updated on 25/Apr/24
Answered by mr W last updated on 26/Apr/24
Commented by mr W last updated on 26/Apr/24
((3y)/(5y))×(a/b)×((c+d)/d)=1  ⇒(c/d)=((5b−3a)/(3a))   ...(i)  (x/(3x))×(d/c)×((b+a)/a)=1  ⇒(c/d)=((a+b)/(3a))   ...(ii)  ⇒a+b=5b−3a  ⇒a=b  ((BA)/(BC))=(b/a)=1 ⇒BA=BC  ⇒ΔABD≡ΔCBD  ⇒∠A=∠C=((180−2×35)/2)=55° ✓
3y5y×ab×c+dd=1cd=5b3a3a(i)x3x×dc×b+aa=1cd=a+b3a(ii)a+b=5b3aa=bBABC=ba=1BA=BCΔABDΔCBDA=C=1802×352=55°
Answered by A5T last updated on 26/Apr/24
Commented by mr W last updated on 26/Apr/24
��
Commented by A5T last updated on 26/Apr/24
((sinθ)/(3x))=((sin35)/(3y))⇒sinθ=((xsin35)/y)  ((sinθ)/(AB))=((sin70)/(8y))⇒AB=((4x)/(cos35))  BC^2 =16x^2 +((16x^2 )/(cos^2 35))−32x^2 =((16x^2 )/(cos^2 35))−16x^2   ⇒BC=4x(√((1/(cos^2 35))−1))=((4xsin35)/(cos35))  ((sin(35+?))/(AB))=((sin35)/(BC))⇒((sin(35+?)cos35)/(4x))=((cos35sin35)/(4xsin35))  sin(35+?)=1⇒?=55°
sinθ3x=sin353ysinθ=xsin35ysinθAB=sin708yAB=4xcos35BC2=16x2+16x2cos23532x2=16x2cos23516x2BC=4x1cos2351=4xsin35cos35sin(35+?)AB=sin35BCsin(35+?)cos354x=cos35sin354xsin35sin(35+?)=1?=55°

Leave a Reply

Your email address will not be published. Required fields are marked *