Menu Close

Find-




Question Number 206845 by hardmath last updated on 27/Apr/24
Find:   ((∞!)/∞^∞ ) = ?
$$\mathrm{Find}:\:\:\:\frac{\infty!}{\infty^{\infty} }\:=\:? \\ $$
Commented by A5T last updated on 27/Apr/24
Do you wish to find this: lim_(n→∞) ((n!)/n^n ) ?
$${Do}\:{you}\:{wish}\:{to}\:{find}\:{this}:\:\underset{{n}\rightarrow\infty} {{lim}}\frac{{n}!}{{n}^{{n}} }\:? \\ $$
Commented by hardmath last updated on 27/Apr/24
Yes Ser
$$\mathrm{Yes}\:\mathrm{Ser} \\ $$
Commented by A5T last updated on 27/Apr/24
0
$$\mathrm{0} \\ $$
Answered by Frix last updated on 27/Apr/24
lim_(n→∞)  ((n!)/n^n )  =_(Formula]) ^([Sterling′s)  lim_(n→∞)  (((n^n /e^n )(√(2πn)))/n^n ) =lim_(n→∞) ((√(2πn))/e^n ) =0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{n}!}{{n}^{{n}} }\:\:\underset{\left.\mathrm{Formula}\right]} {\overset{\left[\mathrm{Sterling}'\mathrm{s}\right.} {=}}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\frac{{n}^{{n}} }{\mathrm{e}^{{n}} }\sqrt{\mathrm{2}\pi{n}}}{{n}^{{n}} }\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{\mathrm{2}\pi{n}}}{\mathrm{e}^{{n}} }\:=\mathrm{0} \\ $$
Commented by hardmath last updated on 28/Apr/24
thank you dear Ser
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{Ser} \\ $$
Commented by MM42 last updated on 30/Apr/24
∀n>2 →0<((n!)/n^n )<((n!)/((n+1)!))=(1/(n+1))  ⇒lim_(n→∞)  ((n!)/n^n )=0 ✓
$$\forall{n}>\mathrm{2}\:\rightarrow\mathrm{0}<\frac{{n}!}{{n}^{{n}} }<\frac{{n}!}{\left({n}+\mathrm{1}\right)!}=\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} \:\frac{{n}!}{{n}^{{n}} }=\mathrm{0}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *