Menu Close

If-A-B-and-A-B-are-non-singular-square-matrices-prove-that-A-1-B-1-is-also-non-singular-




Question Number 206868 by depressiveshrek last updated on 28/Apr/24
If A, B and A+B are non−singular  square matrices, prove that A^(−1) +B^(−1)   is also non−singular.
IfA,BandA+Barenonsingularsquarematrices,provethatA1+B1isalsononsingular.
Answered by aleks041103 last updated on 28/Apr/24
A^(−1) +B^(−1) =A^(−1) (E+AB^(−1) )=  =A^(−1) (B+A)B^(−1)   ⇒det(A^(−1) +B^(−1) )=det(A^(−1) B^(−1) (A+B))=  =det(A^(−1) )det(B^(−1) )det(A+B)    Since ∃A^(−1) ,B^(−1)  ⇒  ⇒det(A^(−1) +B^(−1) )=((det(A+B))/(det(A)det(B)))  Since A, B and A+B are nonsingular  ⇒det(A), det(B), det(A+B) ≠ 0  ⇒det(A^(−1) +B^(−1) )=((det(A+B))/(det(A)det(B)))≠0  ⇒det(A^(−1) +B^(−1) )≠0  ⇒A^(−1) +B^(−1)  is also nonsingular.
A1+B1=A1(E+AB1)==A1(B+A)B1det(A1+B1)=det(A1B1(A+B))==det(A1)det(B1)det(A+B)SinceA1,B1det(A1+B1)=det(A+B)det(A)det(B)SinceA,BandA+Barenonsingulardet(A),det(B),det(A+B)0det(A1+B1)=det(A+B)det(A)det(B)0det(A1+B1)0A1+B1isalsononsingular.

Leave a Reply

Your email address will not be published. Required fields are marked *