If-A-B-and-A-B-are-non-singular-square-matrices-prove-that-A-1-B-1-is-also-non-singular- Tinku Tara April 28, 2024 Algebra 0 Comments FacebookTweetPin Question Number 206868 by depressiveshrek last updated on 28/Apr/24 IfA,BandA+Barenon−singularsquarematrices,provethatA−1+B−1isalsonon−singular. Answered by aleks041103 last updated on 28/Apr/24 A−1+B−1=A−1(E+AB−1)==A−1(B+A)B−1⇒det(A−1+B−1)=det(A−1B−1(A+B))==det(A−1)det(B−1)det(A+B)Since∃A−1,B−1⇒⇒det(A−1+B−1)=det(A+B)det(A)det(B)SinceA,BandA+Barenonsingular⇒det(A),det(B),det(A+B)≠0⇒det(A−1+B−1)=det(A+B)det(A)det(B)≠0⇒det(A−1+B−1)≠0⇒A−1+B−1isalsononsingular. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-206869Next Next post: Question-206874 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.