Menu Close

can-some-one-find-the-exact-value-of-n-0-1-n-2-




Question Number 206890 by mathzup last updated on 29/Apr/24
can some one find the exact value of  Σ_(n=0) ^∞  (1/((n!)^2 ))
cansomeonefindtheexactvalueofn=01(n!)2
Commented by Frix last updated on 30/Apr/24
This is a Modified Bressel Function of the  First Kind.  I_n  (z) =(1/π)∫_0 ^π e^(zcos θ) cos nθ dθ  With n=0 this is equal to  I_0  (z) =Σ_(k=0) ^∞ ((((z^2 /4))^k )/((k!)^2 ))  ⇒ Σ_(k=0) ^∞  (1/((k!)^2 )) =I_0  (2) ≈2.27958530234  I found this in a script, without proof, so  you′ll have to do some research...
ThisisaModifiedBresselFunctionoftheFirstKind.In(z)=1ππ0ezcosθcosnθdθWithn=0thisisequaltoI0(z)=k=0(z24)k(k!)2k=01(k!)2=I0(2)2.27958530234Ifoundthisinascript,withoutproof,soyoullhavetodosomeresearch

Leave a Reply

Your email address will not be published. Required fields are marked *