Menu Close

Question-206919




Question Number 206919 by BaliramKumar last updated on 30/Apr/24
Answered by A5T last updated on 30/Apr/24
MA=2x; MC=3x⇒AC=5x  ⇒AB+BC=4+3x+2x=5x+4  (2+3x)^2 +(2+2x)^2 =25x^2   ⇒3x^2 −5x−2=0⇒x=2 or ((−1)/3)  ⇒AB+BC=14
$${MA}=\mathrm{2}{x};\:{MC}=\mathrm{3}{x}\Rightarrow{AC}=\mathrm{5}{x} \\ $$$$\Rightarrow{AB}+{BC}=\mathrm{4}+\mathrm{3}{x}+\mathrm{2}{x}=\mathrm{5}{x}+\mathrm{4} \\ $$$$\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{2}{x}\right)^{\mathrm{2}} =\mathrm{25}{x}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{2}=\mathrm{0}\Rightarrow{x}=\mathrm{2}\:{or}\:\frac{−\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{AB}+{BC}=\mathrm{14} \\ $$
Answered by A5T last updated on 30/Apr/24
Let the perpendendicular from O_1  to AC meet  it at D.  1−((AD)/(AM))=((AM−AD)/(AM))=((DM)/4)=1−(r_O_1  /r_O )  ⇒DM=4−2r_O_1    (r_O_1  +r_O )^2 =(r_O −r_O_1  )^2 +(DM)^2   ⇒(r_O_1  +2)^2 =(2−r_O_1  )^2 +(4−2r_O_1  )^2   ⇒r_O_1  =3−(√5)  Similarly,we get for O_2   (r_O_2  +2)^2 =(2−r_O_2  )^2 +(6−3r_O_2  )  ⇒r_O_2  =((22−4(√(10)))/9)
$${Let}\:{the}\:{perpendendicular}\:{from}\:{O}_{\mathrm{1}} \:{to}\:{AC}\:{meet} \\ $$$${it}\:{at}\:{D}. \\ $$$$\mathrm{1}−\frac{{AD}}{{AM}}=\frac{{AM}−{AD}}{{AM}}=\frac{{DM}}{\mathrm{4}}=\mathrm{1}−\frac{{r}_{{O}_{\mathrm{1}} } }{{r}_{{O}} } \\ $$$$\Rightarrow{DM}=\mathrm{4}−\mathrm{2}{r}_{{O}_{\mathrm{1}} } \\ $$$$\left({r}_{{O}_{\mathrm{1}} } +{r}_{{O}} \right)^{\mathrm{2}} =\left({r}_{{O}} −{r}_{{O}_{\mathrm{1}} } \right)^{\mathrm{2}} +\left({DM}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left({r}_{{O}_{\mathrm{1}} } +\mathrm{2}\right)^{\mathrm{2}} =\left(\mathrm{2}−{r}_{{O}_{\mathrm{1}} } \right)^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{2}{r}_{{O}_{\mathrm{1}} } \right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}_{{O}_{\mathrm{1}} } =\mathrm{3}−\sqrt{\mathrm{5}} \\ $$$${Similarly},{we}\:{get}\:{for}\:{O}_{\mathrm{2}} \\ $$$$\left({r}_{{O}_{\mathrm{2}} } +\mathrm{2}\right)^{\mathrm{2}} =\left(\mathrm{2}−{r}_{{O}_{\mathrm{2}} } \right)^{\mathrm{2}} +\left(\mathrm{6}−\mathrm{3}{r}_{{O}_{\mathrm{2}} } \right) \\ $$$$\Rightarrow{r}_{{O}_{\mathrm{2}} } =\frac{\mathrm{22}−\mathrm{4}\sqrt{\mathrm{10}}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *