Menu Close

In-how-many-ways-can-the-word-KINECTIC-be-arranged-so-that-no-vowels-can-be-together-




Question Number 206939 by Tawa11 last updated on 01/May/24
In how many ways can the word KINECTIC be  arranged so that no vowels can be together?
In how many ways can the word KINECTIC be
arranged so that no vowels can be together?
Commented by mr W last updated on 01/May/24
3600 ?
$$\mathrm{3600}\:? \\ $$
Commented by Tawa11 last updated on 01/May/24
I got same answer sir.
$$\mathrm{I}\:\mathrm{got}\:\mathrm{same}\:\mathrm{answer}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 01/May/24
But for KINETIC  I got 2160  Textbook says  720
$$\mathrm{But}\:\mathrm{for}\:\mathrm{KINETIC} \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{2160} \\ $$$$\mathrm{Textbook}\:\mathrm{says}\:\:\mathrm{720} \\ $$
Commented by A5T last updated on 01/May/24
I guess the textbook is right about 720.
$${I}\:{guess}\:{the}\:{textbook}\:{is}\:{right}\:{about}\:\mathrm{720}. \\ $$
Commented by mr W last updated on 01/May/24
the question said KINECTIC,  not  KINETIC.  if KINECTIC is meant, then answer  is 3×20×((5!)/2)=3600.  if KINETIC is meant, then answer  is 3×10×4!=720.
$${the}\:{question}\:{said}\:{KINECTIC},\:\:{not} \\ $$$${KINETIC}. \\ $$$${if}\:{KINECTIC}\:{is}\:{meant},\:{then}\:{answer} \\ $$$${is}\:\mathrm{3}×\mathrm{20}×\frac{\mathrm{5}!}{\mathrm{2}}=\mathrm{3600}. \\ $$$${if}\:{KINETIC}\:{is}\:{meant},\:{then}\:{answer} \\ $$$${is}\:\mathrm{3}×\mathrm{10}×\mathrm{4}!=\mathrm{720}. \\ $$
Commented by BaliramKumar last updated on 01/May/24
solution_
$$\mathrm{solutio}\underset{} {\mathrm{n}} \\ $$
Commented by Tawa11 last updated on 01/May/24
Thanks sir.  I understand now sir.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}. \\ $$
Answered by mr W last updated on 01/May/24
KINECTIC  the vowels (I, I, E) must be separated   by at least one consonant.  XVYVYVX  V=one vowel  X=place holder for zero or more consonants  Y=place holder for one or more consonants  to place the vowels there are ((3!)/(2!)) ways.   to place the 5 consonants there  are following possibilities:  0+1+1+3  0+1+2+2  0+1+3+1  0+1+4+0  0+2+1+2  0+2+2+1  0+2+3+0  0+3+1+1  0+3+2+0  0+4+1+0  1+1+1+2  1+1+2+1  1+1+3+0  1+2+1+1  1+2+2+0  1+3+1+0  2+1+1+1  2+1+2+0  2+2+1+0  3+1+1+0  that′s totally 20 possibilities.  therefore there are  ((3!)/(2!))×20×((5!)/(2!))=3600 ways    similarly for KINETIC there are  ((3!)/(2!))×10×4!=720 ways
$$\boldsymbol{{KINECTIC}} \\ $$$${the}\:{vowels}\:\left({I},\:{I},\:{E}\right)\:{must}\:{be}\:{separated}\: \\ $$$${by}\:{at}\:{least}\:{one}\:{consonant}. \\ $$$${XVYVYVX} \\ $$$${V}={one}\:{vowel} \\ $$$${X}={place}\:{holder}\:{for}\:{zero}\:{or}\:{more}\:{consonants} \\ $$$${Y}={place}\:{holder}\:{for}\:{one}\:{or}\:{more}\:{consonants} \\ $$$${to}\:{place}\:{the}\:{vowels}\:{there}\:{are}\:\frac{\mathrm{3}!}{\mathrm{2}!}\:{ways}.\: \\ $$$${to}\:{place}\:{the}\:\mathrm{5}\:{consonants}\:{there} \\ $$$${are}\:{following}\:{possibilities}: \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{1}+\mathrm{3} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{2}+\mathrm{2} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{3}+\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{4}+\mathrm{0} \\ $$$$\mathrm{0}+\mathrm{2}+\mathrm{1}+\mathrm{2} \\ $$$$\mathrm{0}+\mathrm{2}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{2}+\mathrm{3}+\mathrm{0} \\ $$$$\mathrm{0}+\mathrm{3}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{3}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{0}+\mathrm{4}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{2} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{3}+\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{2}+\mathrm{1}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{2}+\mathrm{1}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{2}+\mathrm{2}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{3}+\mathrm{1}+\mathrm{1}+\mathrm{0} \\ $$$${that}'{s}\:{totally}\:\mathrm{20}\:{possibilities}. \\ $$$${therefore}\:{there}\:{are} \\ $$$$\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{20}×\frac{\mathrm{5}!}{\mathrm{2}!}=\mathrm{3600}\:{ways} \\ $$$$ \\ $$$${similarly}\:{for}\:\boldsymbol{{KINETIC}}\:{there}\:{are} \\ $$$$\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{10}×\mathrm{4}!=\mathrm{720}\:{ways} \\ $$
Commented by mr W last updated on 02/May/24
Method II (generating function)  for word KINECTIC  XVYVYVX  X⇒(1+x+x^2 +....)  Y⇒(x+x^2 +....)=x(1+x+x^2 +...)  (1+x+x^2 +....)^2 (x+x^2 +....)^2   =x^2 (1+x+x^2 +....)^4   =(x^2 /((1−x)^4 ))  =x^2 Σ_(k=0) ^∞ C_3 ^(k+3) x^k   coef. of x^5  term is C_3 ^(3+3) =20  ⇒number of ways: ((3!)/(2!))×20×((5!)/(2!))=3600    for word KINETIC  coef. of x^4  term is C_3 ^(2+3) =10  ⇒number of ways: ((3!)/(2!))×10×4!=720
$${Method}\:{II}\:\left({generating}\:{function}\right) \\ $$$${for}\:{word}\:\boldsymbol{{KINECTIC}} \\ $$$${XVYVYVX} \\ $$$${X}\Rightarrow\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +….\right) \\ $$$${Y}\Rightarrow\left({x}+{x}^{\mathrm{2}} +….\right)={x}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +…\right) \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +….\right)^{\mathrm{2}} \left({x}+{x}^{\mathrm{2}} +….\right)^{\mathrm{2}} \\ $$$$={x}^{\mathrm{2}} \left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +….\right)^{\mathrm{4}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$$={x}^{\mathrm{2}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{3}} ^{{k}+\mathrm{3}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{5}} \:{term}\:{is}\:{C}_{\mathrm{3}} ^{\mathrm{3}+\mathrm{3}} =\mathrm{20} \\ $$$$\Rightarrow{number}\:{of}\:{ways}:\:\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{20}×\frac{\mathrm{5}!}{\mathrm{2}!}=\mathrm{3600} \\ $$$$ \\ $$$${for}\:{word}\:\boldsymbol{{KINETIC}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{4}} \:{term}\:{is}\:{C}_{\mathrm{3}} ^{\mathrm{2}+\mathrm{3}} =\mathrm{10} \\ $$$$\Rightarrow{number}\:{of}\:{ways}:\:\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{10}×\mathrm{4}!=\mathrm{720} \\ $$
Commented by Tawa11 last updated on 01/May/24
Great sir.  I will study this.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{study}\:\mathrm{this}. \\ $$
Commented by mr W last updated on 02/May/24
generally if there are m (different)  vowels and n (different) consonants  (n+1≥m), then the answer is  m!n!C_m ^(n+1)   if there is repetition in vowels and  or in consonants, then the answer is  ((m!)/(m_1 !m_2 !...))×((n!)/(n_1 !n_2 !...))×C_m ^(n+1)
$${generally}\:{if}\:{there}\:{are}\:{m}\:\left({different}\right) \\ $$$${vowels}\:{and}\:{n}\:\left({different}\right)\:{consonants} \\ $$$$\left({n}+\mathrm{1}\geqslant{m}\right),\:{then}\:{the}\:{answer}\:{is} \\ $$$${m}!{n}!{C}_{{m}} ^{{n}+\mathrm{1}} \\ $$$${if}\:{there}\:{is}\:{repetition}\:{in}\:{vowels}\:{and} \\ $$$${or}\:{in}\:{consonants},\:{then}\:{the}\:{answer}\:{is} \\ $$$$\frac{{m}!}{{m}_{\mathrm{1}} !{m}_{\mathrm{2}} !…}×\frac{{n}!}{{n}_{\mathrm{1}} !{n}_{\mathrm{2}} !…}×{C}_{{m}} ^{{n}+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *