Question Number 206939 by Tawa11 last updated on 01/May/24
In how many ways can the word KINECTIC be
arranged so that no vowels can be together?
arranged so that no vowels can be together?
Commented by mr W last updated on 01/May/24
$$\mathrm{3600}\:? \\ $$
Commented by Tawa11 last updated on 01/May/24
$$\mathrm{I}\:\mathrm{got}\:\mathrm{same}\:\mathrm{answer}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 01/May/24
$$\mathrm{But}\:\mathrm{for}\:\mathrm{KINETIC} \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{2160} \\ $$$$\mathrm{Textbook}\:\mathrm{says}\:\:\mathrm{720} \\ $$
Commented by A5T last updated on 01/May/24
$${I}\:{guess}\:{the}\:{textbook}\:{is}\:{right}\:{about}\:\mathrm{720}. \\ $$
Commented by mr W last updated on 01/May/24
$${the}\:{question}\:{said}\:{KINECTIC},\:\:{not} \\ $$$${KINETIC}. \\ $$$${if}\:{KINECTIC}\:{is}\:{meant},\:{then}\:{answer} \\ $$$${is}\:\mathrm{3}×\mathrm{20}×\frac{\mathrm{5}!}{\mathrm{2}}=\mathrm{3600}. \\ $$$${if}\:{KINETIC}\:{is}\:{meant},\:{then}\:{answer} \\ $$$${is}\:\mathrm{3}×\mathrm{10}×\mathrm{4}!=\mathrm{720}. \\ $$
Commented by BaliramKumar last updated on 01/May/24
$$\mathrm{solutio}\underset{} {\mathrm{n}} \\ $$
Commented by Tawa11 last updated on 01/May/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}. \\ $$
Answered by mr W last updated on 01/May/24
$$\boldsymbol{{KINECTIC}} \\ $$$${the}\:{vowels}\:\left({I},\:{I},\:{E}\right)\:{must}\:{be}\:{separated}\: \\ $$$${by}\:{at}\:{least}\:{one}\:{consonant}. \\ $$$${XVYVYVX} \\ $$$${V}={one}\:{vowel} \\ $$$${X}={place}\:{holder}\:{for}\:{zero}\:{or}\:{more}\:{consonants} \\ $$$${Y}={place}\:{holder}\:{for}\:{one}\:{or}\:{more}\:{consonants} \\ $$$${to}\:{place}\:{the}\:{vowels}\:{there}\:{are}\:\frac{\mathrm{3}!}{\mathrm{2}!}\:{ways}.\: \\ $$$${to}\:{place}\:{the}\:\mathrm{5}\:{consonants}\:{there} \\ $$$${are}\:{following}\:{possibilities}: \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{1}+\mathrm{3} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{2}+\mathrm{2} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{3}+\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{4}+\mathrm{0} \\ $$$$\mathrm{0}+\mathrm{2}+\mathrm{1}+\mathrm{2} \\ $$$$\mathrm{0}+\mathrm{2}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{2}+\mathrm{3}+\mathrm{0} \\ $$$$\mathrm{0}+\mathrm{3}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{3}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{0}+\mathrm{4}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{2} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{3}+\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{2}+\mathrm{1}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{2}+\mathrm{1}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{2}+\mathrm{2}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{3}+\mathrm{1}+\mathrm{1}+\mathrm{0} \\ $$$${that}'{s}\:{totally}\:\mathrm{20}\:{possibilities}. \\ $$$${therefore}\:{there}\:{are} \\ $$$$\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{20}×\frac{\mathrm{5}!}{\mathrm{2}!}=\mathrm{3600}\:{ways} \\ $$$$ \\ $$$${similarly}\:{for}\:\boldsymbol{{KINETIC}}\:{there}\:{are} \\ $$$$\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{10}×\mathrm{4}!=\mathrm{720}\:{ways} \\ $$
Commented by mr W last updated on 02/May/24
$${Method}\:{II}\:\left({generating}\:{function}\right) \\ $$$${for}\:{word}\:\boldsymbol{{KINECTIC}} \\ $$$${XVYVYVX} \\ $$$${X}\Rightarrow\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +….\right) \\ $$$${Y}\Rightarrow\left({x}+{x}^{\mathrm{2}} +….\right)={x}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +…\right) \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +….\right)^{\mathrm{2}} \left({x}+{x}^{\mathrm{2}} +….\right)^{\mathrm{2}} \\ $$$$={x}^{\mathrm{2}} \left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +….\right)^{\mathrm{4}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$$={x}^{\mathrm{2}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{3}} ^{{k}+\mathrm{3}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{5}} \:{term}\:{is}\:{C}_{\mathrm{3}} ^{\mathrm{3}+\mathrm{3}} =\mathrm{20} \\ $$$$\Rightarrow{number}\:{of}\:{ways}:\:\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{20}×\frac{\mathrm{5}!}{\mathrm{2}!}=\mathrm{3600} \\ $$$$ \\ $$$${for}\:{word}\:\boldsymbol{{KINETIC}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{4}} \:{term}\:{is}\:{C}_{\mathrm{3}} ^{\mathrm{2}+\mathrm{3}} =\mathrm{10} \\ $$$$\Rightarrow{number}\:{of}\:{ways}:\:\frac{\mathrm{3}!}{\mathrm{2}!}×\mathrm{10}×\mathrm{4}!=\mathrm{720} \\ $$
Commented by Tawa11 last updated on 01/May/24
$$\mathrm{Great}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{study}\:\mathrm{this}. \\ $$
Commented by mr W last updated on 02/May/24
$${generally}\:{if}\:{there}\:{are}\:{m}\:\left({different}\right) \\ $$$${vowels}\:{and}\:{n}\:\left({different}\right)\:{consonants} \\ $$$$\left({n}+\mathrm{1}\geqslant{m}\right),\:{then}\:{the}\:{answer}\:{is} \\ $$$${m}!{n}!{C}_{{m}} ^{{n}+\mathrm{1}} \\ $$$${if}\:{there}\:{is}\:{repetition}\:{in}\:{vowels}\:{and} \\ $$$${or}\:{in}\:{consonants},\:{then}\:{the}\:{answer}\:{is} \\ $$$$\frac{{m}!}{{m}_{\mathrm{1}} !{m}_{\mathrm{2}} !…}×\frac{{n}!}{{n}_{\mathrm{1}} !{n}_{\mathrm{2}} !…}×{C}_{{m}} ^{{n}+\mathrm{1}} \\ $$