Menu Close

Question-206956




Question Number 206956 by mr W last updated on 01/May/24
Commented by mr W last updated on 01/May/24
find the radius of circle.
$${find}\:{the}\:{radius}\:{of}\:{circle}. \\ $$
Answered by Frix last updated on 01/May/24
3 points given   ((0),(0) )      ((0),(6) )      (((12)),((12)) )  ⇒ Triangle with sides  6     6(√5)     12(√2)  ⇒ R=3(√(10))
$$\mathrm{3}\:\mathrm{points}\:\mathrm{given} \\ $$$$\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:\:\:\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{6}}\end{pmatrix}\:\:\:\:\:\begin{pmatrix}{\mathrm{12}}\\{\mathrm{12}}\end{pmatrix} \\ $$$$\Rightarrow\:\mathrm{Triangle}\:\mathrm{with}\:\mathrm{sides} \\ $$$$\mathrm{6}\:\:\:\:\:\mathrm{6}\sqrt{\mathrm{5}}\:\:\:\:\:\mathrm{12}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\:{R}=\mathrm{3}\sqrt{\mathrm{10}} \\ $$
Commented by mr W last updated on 01/May/24
��
Answered by mr W last updated on 01/May/24
Commented by mr W last updated on 01/May/24
BC=(√((6+4+2)^2 +(4+2)^2 ))=6(√5)  R=((BC)/(2 sin A))=((6(√5))/(2×((√2)/2)))=3(√(10))
$${BC}=\sqrt{\left(\mathrm{6}+\mathrm{4}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{4}+\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{6}\sqrt{\mathrm{5}} \\ $$$${R}=\frac{{BC}}{\mathrm{2}\:\mathrm{sin}\:{A}}=\frac{\mathrm{6}\sqrt{\mathrm{5}}}{\mathrm{2}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}=\mathrm{3}\sqrt{\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *