Menu Close

If-sin-m-2-2mn-m-2-2mn-2n-2-then-prove-that-tan-m-2-2mn-2mn-2n-2-




Question Number 206970 by MATHEMATICSAM last updated on 02/May/24
If sinθ = ((m^2  + 2mn)/(m^2  + 2mn + 2n^2 )) then prove  that tanθ = ((m^2  + 2mn)/(2mn + 2n^2 )) .
Ifsinθ=m2+2mnm2+2mn+2n2thenprovethattanθ=m2+2mn2mn+2n2.
Answered by Rasheed.Sindhi last updated on 02/May/24
sinθ = ((m^2  + 2mn)/(m^2  + 2mn + 2n^2 ))  sin^2 θ =( ((m^2  + 2mn)/(m^2  + 2mn + 2n^2 )))^2   1−sin^2 θ=1− (((m^2  + 2mn)^2 )/((m^2  + 2mn + 2n^2 )^2 ))  cos^2 θ=(((m^2  + 2mn + 2n^2 )^2 −(m^2  + 2mn)^2 )/((m^2  + 2mn + 2n^2 )^2 ))   tan^2 θ= ((sin^2 θ )/(cos^2  ))= (((m^2  + 2mn)^2 )/((m^2  + 2mn + 2n^2 )^2 )) × (((m^2  + 2mn + 2n^2 )^2 )/((m^2  + 2mn + 2n^2 )^2 −(m^2  + 2mn)^2 ))  tan^2 θ=(((m^2  + 2mn)^2 )/({(m^2  + 2mn + 2n^2 )−(m^2  + 2mn)}{(m^2  + 2mn + 2n^2 )+(m^2  + 2mn)}))          =(((m^2  + 2mn)^2 )/(2n^2 (2m^2  + 4mn + 2n^2 )))         =(((m^2  + 2mn)^2 )/(4n^2 (m^2  + 2mn + n^2 )))          =(((m^2  + 2mn)^2 )/(4n^2 (m+n)^2 ))  tanθ=±((m(m + 2n))/(2n(m+n)))
sinθ=m2+2mnm2+2mn+2n2sin2θ=(m2+2mnm2+2mn+2n2)21sin2θ=1(m2+2mn)2(m2+2mn+2n2)2cos2θ=(m2+2mn+2n2)2(m2+2mn)2(m2+2mn+2n2)2tan2θ=sin2θcos2=(m2+2mn)2(m2+2mn+2n2)2×(m2+2mn+2n2)2(m2+2mn+2n2)2(m2+2mn)2tan2θ=(m2+2mn)2{(m2+2mn+2n2)(m2+2mn)}{(m2+2mn+2n2)+(m2+2mn)}=(m2+2mn)22n2(2m2+4mn+2n2)=(m2+2mn)24n2(m2+2mn+n2)=(m2+2mn)24n2(m+n)2tanθ=±m(m+2n)2n(m+n)
Answered by Frix last updated on 02/May/24
t=(s/( (√(1−s^2 ))))  s^ =(u/v) ⇒ t=(u/( (√(v^2 −u^2 ))))  u=m^2 +2mn  v=m^2 +2mn+2n^2   t=((m(m+2n))/(2∣(m+n)n∣))
t=s1s2s=uvt=uv2u2u=m2+2mnv=m2+2mn+2n2t=m(m+2n)2(m+n)n

Leave a Reply

Your email address will not be published. Required fields are marked *