Menu Close

Given-a-n-1-3-6a-n-and-a-4-9-Find-a-n-




Question Number 206997 by efronzo1 last updated on 03/May/24
Given a_(n+1) = 3−6a_n  and a_4 =−9   Find a_n =?
Givenan+1=36ananda4=9Findan=?
Answered by mr W last updated on 04/May/24
a_(n+1) +6a_n =3  let a_n =b_n +k  b_(n+1) +k+6(b_n +k)=3  b_(n+1) +6b_n =3−7k=^! 0 ⇒k=(3/7)  b_n =−6b_(n−1) =(−6)^2 b_(n−2) =...=(−6)^(n−4) b_4   a_n −k=(−6)^(n−4) (a_4 −k)  a_n =(−6)^(n−4) (a_4 −k)+k  a_n =(−6)^(n−4) (−9−(3/7))+(3/7)  ⇒a_n =((11(−6)^(n−3) +3)/7)
an+1+6an=3letan=bn+kbn+1+k+6(bn+k)=3bn+1+6bn=37k=!0k=37bn=6bn1=(6)2bn2==(6)n4b4ank=(6)n4(a4k)an=(6)n4(a4k)+kan=(6)n4(937)+37an=11(6)n3+37
Commented by efronzo1 last updated on 03/May/24
 ⇒a_(n+1) = b_(n+1) +k   ⇒3−a_n = b_(n+1) +k   ⇒3−(b_n +k)= b_(n+1) +k    ⇒b_(n+1) +b_n = 3−2k
an+1=bn+1+k3an=bn+1+k3(bn+k)=bn+1+kbn+1+bn=32k
Commented by mr W last updated on 03/May/24
but your question is   ⇒3−6a_n = b_(n+1) +k
butyourquestionis36an=bn+1+k
Commented by efronzo1 last updated on 03/May/24
why 3−7k=0 ?
why37k=0?
Commented by mr W last updated on 03/May/24
we just set 3−7k=0 such that  b_n  becomes an easy G.P.:  b_n =−6b_(n−1)
wejustset37k=0suchthatbnbecomesaneasyG.P.:bn=6bn1
Commented by mathzup last updated on 03/May/24
the method of sir mrw is correct
themethodofsirmrwiscorrect
Answered by mathzup last updated on 03/May/24
⇒a_(n+1) +6a_n −3=0  he→r+6=0 ⇒r=−6 ⇒a_n =λ(−6)^n  +ρ  a_4 =λ(−6)^4 +ρ  a_5 =3−6a_4 =3−6(−9)=3+6.9  =57=λ(−6)^5  +ρ  we get the system   { (((−6)^4 λ+ρ =−9)),(((−6)^5 λ +ρ =57  ⇒)) :}  ((−6)^5 −(−6)^4 )λ=57+9 =66 ⇒  λ=((66)/(−6^5 −6^4 ))=−((66)/(6^4 +6^5 ))=−((66)/(6^4 ×7))  ρ=−9−6^4  λ =−9+6^4 .((66)/(6^4 .7))  =−9+((66)/7)  rest to finich to calculus...
an+1+6an3=0her+6=0r=6an=λ(6)n+ρa4=λ(6)4+ρa5=36a4=36(9)=3+6.9=57=λ(6)5+ρwegetthesystem{(6)4λ+ρ=9(6)5λ+ρ=57((6)5(6)4)λ=57+9=66λ=666564=6664+65=6664×7ρ=964λ=9+64.6664.7=9+667resttofinichtocalculus

Leave a Reply

Your email address will not be published. Required fields are marked *