Menu Close

If-a-n-1-2-5a-n-and-a-4-8-prove-that-a-43-a-30-divisible-by-5-




Question Number 207021 by efronzo1 last updated on 03/May/24
  If  a_(n+1) =2−5a_n  and a_4 = −8    prove that a_(43) −a_(30)  divisible by 5
Ifan+1=25ananda4=8provethata43a30divisibleby5
Commented by mr W last updated on 04/May/24
as shown in Q206997 we can get  a_n =−(((−5)^(n−2) )/3)+(1/3)  a_(43) −a_(30) =(((−5)^(28) −(−5)^(41) )/3)=((5^(28) (1+5^(13) ))/3)≡  1+5^(13) =1+(2×3−1)^(13)                =1+(multiple of 3)−1               =(multiple of 3)  ⇒a_(43) −a_(30)  is divisible by 5
asshowninQ206997wecangetan=(5)n23+13a43a30=(5)28(5)413=528(1+513)31+513=1+(2×31)13=1+(multipleof3)1=(multipleof3)a43a30isdivisibleby5
Answered by Berbere last updated on 04/May/24
a_(n+1) ≡2[5];∀n≥4∴ a_(n+1) =2−5.a_n ∵  a_(43) ≡2[5];a_(30) ≡2[5]⇒a_(43) −a_(30) ≡0[5]
an+12[5];n4an+1=25.ana432[5];a302[5]a43a300[5]

Leave a Reply

Your email address will not be published. Required fields are marked *