Question Number 206992 by mnjuly1970 last updated on 03/May/24
$$ \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$
Answered by mr W last updated on 03/May/24
$$−\mathrm{1}\leqslant{x}^{\mathrm{2}} +{x}<\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}<{x}<\mathrm{0} \\ $$$$\Rightarrow\mathrm{0}<{x}^{\mathrm{2}{n}} <\mathrm{1}\:\Rightarrow\lfloor{x}^{\mathrm{2}{n}} \rfloor=\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}<{x}^{\mathrm{2}{n}+\mathrm{1}} <\mathrm{0}\:\Rightarrow\lfloor{x}^{\mathrm{2}{n}+\mathrm{1}} \rfloor=−\mathrm{1} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{30}} {\sum}}\lfloor{x}^{{k}} \rfloor=\underset{{n}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\lfloor{x}^{\mathrm{2}{n}} \rfloor+\underset{{n}=\mathrm{0}} {\overset{\mathrm{14}} {\sum}}\lfloor{x}^{\mathrm{2}{n}+\mathrm{1}} \rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{15}×\mathrm{0}+\mathrm{15}×\left(−\mathrm{1}\right)=−\mathrm{15} \\ $$
Commented by mnjuly1970 last updated on 03/May/24
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$