Menu Close

Prove-that-the-sum-of-a-square-function-is-n-n-1-2n-1-6-




Question Number 207042 by necx122 last updated on 04/May/24
Prove that the sum of a square function  is ((n(n+1)(2n+1))/6)
Provethatthesumofasquarefunctionisn(n+1)(2n+1)6
Answered by Rasheed.Sindhi last updated on 04/May/24
p(n):  1^2 +2^2 +3^2 +...+n^2 = ((n(n+1)(2n+1))/6)  •p(1):  1^2 =((1(1+1)( 2(1)+1 ))/6)  1=((1×2×3)/6)=1  ∴p(1) is true.  •Let p(k) is true  1^2 +2^2 +3^2 +...+k^2 =((k(k+1)(2k+1))/6)  p(k+1):  1^2 +2^2 +3^2 +...+k^2 +(k+1)^2 =((k(k+1)(2k+1))/6)+(k+1)^2        =((k(k+1)(2k+1)+6(k+1)^2 )/6)       =(((k+1){k(2k+1)+6(k+1)})/6)       =(((k+1)(2k^2 +7k+6))/6)       =(((k+1)(k+2)(2k+3))/6)       =(((k+1^(−) )(k+1^(−) +1)( 2(k+1^(−) )+1))/6)  •∵ { ((p(1) is true)),(( p(k) is true⇒p(k+1) is true)) :}  ∴ p(n) is true for n∈N
p(n):12+22+32++n2=n(n+1)(2n+1)6p(1):12=1(1+1)(2(1)+1)61=1×2×36=1p(1)istrue.Letp(k)istrue12+22+32++k2=k(k+1)(2k+1)6p(k+1):12+22+32++k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1){k(2k+1)+6(k+1)}6=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)(k+1+1)(2(k+1)+1)6{p(1)istruep(k)istruep(k+1)istruep(n)istruefornN
Commented by necx122 last updated on 04/May/24
Thank you so much. This is mathematical  induction, however, if the  question was just to prove the sum of  a square function without knowing  the value before, how should that be  done.
Thankyousomuch.Thisismathematicalinduction,however,ifthequestionwasjusttoprovethesumofasquarefunctionwithoutknowingthevaluebefore,howshouldthatbedone.
Commented by Rasheed.Sindhi last updated on 05/May/24
Don′t know the way to obtain  the above formula.
Dontknowthewaytoobtaintheaboveformula.
Answered by mr W last updated on 05/May/24
we know:  Σ_(k=1) ^n k=1+2+3+...+n=((n(n+1))/2)  (k+1)^3 −k^3 =3k^2 +3k+1  Σ_(k=1) ^n [(k+1)^3 −k^3 ]=3Σ_(k=1) ^n k^2 +3Σ_(k=1) ^n k+n  (n+1)^3 −1=3Σ_(k=1) ^n k^2 +3×((n(n+1))/2)+n  3Σ_(k=1) ^n k^2 =n^3 +3n^2 +2n−((3n(n+1))/2)=((n(n+1)(2n+1))/2)  ⇒Σ_(k=1) ^n k^2 =((n(n+1)(2n+1))/6)
weknow:nk=1k=1+2+3++n=n(n+1)2(k+1)3k3=3k2+3k+1nk=1[(k+1)3k3]=3nk=1k2+3nk=1k+n(n+1)31=3nk=1k2+3×n(n+1)2+n3nk=1k2=n3+3n2+2n3n(n+1)2=n(n+1)(2n+1)2nk=1k2=n(n+1)(2n+1)6
Commented by mr W last updated on 04/May/24
in similary way you can get  Σ_(k=1) ^n k^3 , Σ_(k=1) ^n k^4 , Σ_(k=1) ^n k^5 , ...
insimilarywayyoucangetnk=1k3,nk=1k4,nk=1k5,
Commented by necx122 last updated on 04/May/24
Wow!! I never thought of this.  Thank you sir.
Wow!!Ineverthoughtofthis.Thankyousir.
Commented by mr W last updated on 04/May/24
Answered by Frix last updated on 05/May/24
S(n)=Σ_(j=1) ^n j^2 =?  Assuming S(n)=an^3 +bn^2 +cn+d  n=1, 2, 3, 4  (1) a+b+c+d=1  (2) 8a+4b+2c+d=5  (3) 27a+9b+3c+d=14  (4) 64a+16b+4c+d=30  Solving this system leads to  a=(1/3)∧b=(1/2)∧c=(1/6)∧d=0  ⇒  S(n)=(n^3 /3)+(n^2 /2)+(n/6)=((2n^2 +3n^2 +n)/6)=((n(n+1)(2n+1))/6)  We can test this for the next values n  S(5)=55  S(6)=91  ...  or with different values for the insertion  n=3, 7, 12, 19  (1) 27a+9b+3c+d=14  (2) 343a+49b+7c+d=140  (3) 1728a+144b+12+d=650  (4) 6859a+361b+19c+d=2470  which leads to the exact same result for S(n)
S(n)=nj=1j2=?AssumingS(n)=an3+bn2+cn+dn=1,2,3,4(1)a+b+c+d=1(2)8a+4b+2c+d=5(3)27a+9b+3c+d=14(4)64a+16b+4c+d=30Solvingthissystemleadstoa=13b=12c=16d=0S(n)=n33+n22+n6=2n2+3n2+n6=n(n+1)(2n+1)6WecantestthisforthenextvaluesnS(5)=55S(6)=91orwithdifferentvaluesfortheinsertionn=3,7,12,19(1)27a+9b+3c+d=14(2)343a+49b+7c+d=140(3)1728a+144b+12+d=650(4)6859a+361b+19c+d=2470whichleadstotheexactsameresultforS(n)

Leave a Reply

Your email address will not be published. Required fields are marked *