Menu Close

for-the-given-system-of-ODEs-calculate-the-eigenvalues-and-corresponding-eigenvectors-of-the-coefficient-matrix-dx-dt-2x-y-dy-dt-x-2y-




Question Number 207096 by Wuji last updated on 06/May/24
for the given system of ODEs, calculate the  eigenvalues and corresponding eigenvectors of the   coefficient matrix  (dx/dt)=2x+y   (dy/dt)=x+2y
forthegivensystemofODEs,calculatetheeigenvaluesandcorrespondingeigenvectorsofthecoefficientmatrixdxdt=2x+ydydt=x+2y
Commented by Wuji last updated on 07/May/24
need a helping hand, please
needahelpinghand,please
Commented by aleks041103 last updated on 07/May/24
the idea is   if   q= ((x),(y) ) and also then  (dq/dt)= (((dx/dt)),((dy/dt)) )  then you can write the linear ODE as  (dq/dt)=M^�  q   where M^�  is the coefficient matrix    ⇒ in this case the coeff matrix is   ((2,1),(1,2) )...  try from here yourself
theideaisifq=(xy)andalsothendqdt=(dx/dtdy/dt)thenyoucanwritethelinearODEasdqdt=M^qwhereM^isthecoefficientmatrixinthiscasethecoeffmatrixis(2112)tryfromhereyourself
Commented by Wuji last updated on 07/May/24
yes, sir.  thank you so much
yes,sir.thankyousomuch
Answered by mr W last updated on 07/May/24
alternative way:  (i)+(ii):  ((d(x+y))/dt)=3(x+y)  ((d(x+y))/(x+y))=3dt  ⇒ln (x+y)=3t+C  ⇒x+y=2C_1 e^(3t)    ...(I)  (i)−(ii):  ((d(x−y))/dt)=x−y  ((d(x−y))/(x−y))=dt  ⇒ln (x−y)=t+C  ⇒x−y=2C_2 e^t    ...(II)  ⇒x=C_1 e^(3t) +C_2 e^t   ⇒y=C_1 e^(3t) −C_2 e^t
alternativeway:(i)+(ii):d(x+y)dt=3(x+y)d(x+y)x+y=3dtln(x+y)=3t+Cx+y=2C1e3t(I)(i)(ii):d(xy)dt=xyd(xy)xy=dtln(xy)=t+Cxy=2C2et(II)x=C1e3t+C2ety=C1e3tC2et
Commented by Wuji last updated on 07/May/24
God bless you, sir
Godblessyou,sir

Leave a Reply

Your email address will not be published. Required fields are marked *