Menu Close

x-2-x-2y-y-2-y-2x-x-y-




Question Number 207116 by hardmath last updated on 06/May/24
 { ((x^2  = x − 2y)),((y^2  = y − 2x)) :}     ⇒     x − y = ?
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{x}\:−\:\mathrm{2y}}\\{\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{y}\:−\:\mathrm{2x}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\:\:\mathrm{x}\:−\:\mathrm{y}\:=\:? \\ $$
Answered by A5T last updated on 06/May/24
x^2 −y^2 =x−y+2(x−y)=3(x−y)  x−y≠0⇒x+y=3  x^2 +y^2 =x+y−2(x+y)⇒x^2 +y^2 =−x−y  ⇒(x+y)^2 −2xy=−3⇒2xy=12⇒xy=6  (x−y)^2 =(x+y)^2 −4xy=9−24=−15  ⇒x−y=+_− i(√(15)) or x−y=0
$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={x}−{y}+\mathrm{2}\left({x}−{y}\right)=\mathrm{3}\left({x}−{y}\right) \\ $$$${x}−{y}\neq\mathrm{0}\Rightarrow{x}+{y}=\mathrm{3} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={x}+{y}−\mathrm{2}\left({x}+{y}\right)\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =−{x}−{y} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}=−\mathrm{3}\Rightarrow\mathrm{2}{xy}=\mathrm{12}\Rightarrow{xy}=\mathrm{6} \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} =\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{4}{xy}=\mathrm{9}−\mathrm{24}=−\mathrm{15} \\ $$$$\Rightarrow{x}−{y}=\underset{−} {+}{i}\sqrt{\mathrm{15}}\:{or}\:{x}−{y}=\mathrm{0} \\ $$
Answered by MATHEMATICSAM last updated on 07/May/24
x^2  = x − 2y ... (i)  y^2  = y − 2x ... (ii)  ....................  (i) − (ii)  x^2  − y^2  = x − y + 2(x − y)  ⇒ (x + y)(x − y) = 3(x − y)  ⇒ x + y = 3  when x − y ≠ 0  (i) + (ii)  x^2  + y^2  = x + y −2 (x + y)  ⇒ (x + y)^2  − 2xy = − (x + y)  ⇒ 3^2  − 2xy = −3  ⇒ 9 + 3 = 2xy  ⇒ xy = 6  Now (x − y)^2  = (x + y)^2  − 4xy  = 3^2  − 4 × 6 = 9 − 24 = − 15  ∴  x − y = ± i(√(15))    ∴ x − y = ± i(√(15)) or x − y = 0 (Ans)
$${x}^{\mathrm{2}} \:=\:{x}\:−\:\mathrm{2}{y}\:…\:\left(\mathrm{i}\right) \\ $$$${y}^{\mathrm{2}} \:=\:{y}\:−\:\mathrm{2}{x}\:…\:\left(\mathrm{ii}\right) \\ $$$$……………….. \\ $$$$\left(\mathrm{i}\right)\:−\:\left(\mathrm{ii}\right) \\ $$$${x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:{x}\:−\:{y}\:+\:\mathrm{2}\left({x}\:−\:{y}\right) \\ $$$$\Rightarrow\:\left({x}\:+\:{y}\right)\left({x}\:−\:{y}\right)\:=\:\mathrm{3}\left({x}\:−\:{y}\right) \\ $$$$\Rightarrow\:{x}\:+\:{y}\:=\:\mathrm{3}\:\:\mathrm{when}\:{x}\:−\:{y}\:\neq\:\mathrm{0} \\ $$$$\left(\mathrm{i}\right)\:+\:\left(\mathrm{ii}\right) \\ $$$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:{x}\:+\:{y}\:−\mathrm{2}\:\left({x}\:+\:{y}\right) \\ $$$$\Rightarrow\:\left({x}\:+\:{y}\right)^{\mathrm{2}} \:−\:\mathrm{2}{xy}\:=\:−\:\left({x}\:+\:{y}\right) \\ $$$$\Rightarrow\:\mathrm{3}^{\mathrm{2}} \:−\:\mathrm{2}{xy}\:=\:−\mathrm{3} \\ $$$$\Rightarrow\:\mathrm{9}\:+\:\mathrm{3}\:=\:\mathrm{2}{xy} \\ $$$$\Rightarrow\:{xy}\:=\:\mathrm{6} \\ $$$$\mathrm{Now}\:\left({x}\:−\:{y}\right)^{\mathrm{2}} \:=\:\left({x}\:+\:{y}\right)^{\mathrm{2}} \:−\:\mathrm{4}{xy} \\ $$$$=\:\mathrm{3}^{\mathrm{2}} \:−\:\mathrm{4}\:×\:\mathrm{6}\:=\:\mathrm{9}\:−\:\mathrm{24}\:=\:−\:\mathrm{15} \\ $$$$\therefore\:\:{x}\:−\:{y}\:=\:\pm\:{i}\sqrt{\mathrm{15}} \\ $$$$ \\ $$$$\therefore\:\boldsymbol{{x}}\:−\:\boldsymbol{{y}}\:=\:\pm\:\boldsymbol{{i}}\sqrt{\mathrm{15}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{{x}}\:−\:\boldsymbol{{y}}\:=\:\mathrm{0}\:\left(\boldsymbol{\mathrm{Ans}}\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *