Menu Close

If-e-y-x-1-1-then-prove-that-d-2-y-dx-2-dy-dx-2-




Question Number 207122 by MATHEMATICSAM last updated on 07/May/24
If e^y (x + 1) = 1 then prove that  (d^2 y/dx^2 ) = ((dy/dx))^2 .
Ifey(x+1)=1thenprovethatd2ydx2=(dydx)2.
Answered by BaliramKumar last updated on 07/May/24
e^y  = (1/(x+1))  y = −ln(x+1)  (dy/dx) = −(1/(x+1))    ⇒ ((dy/dx))^2  = ((1/(x+1)))^2   (dy/dx) = −(x+1)^(−1)            (d^2 y/dx^2 ) = −[−1(x+1)^(−2) ]  (d^2 y/dx^2 ) = (x+1)^(−2)  = ((1/(x+1)))^2   (d^2 y/dx^2 ) =  ((dy/dx))^2
ey=1x+1y=ln(x+1)dydx=1x+1(dydx)2=(1x+1)2dydx=(x+1)1d2ydx2=[1(x+1)2]d2ydx2=(x+1)2=(1x+1)2d2ydx2=(dydx)2

Leave a Reply

Your email address will not be published. Required fields are marked *