Menu Close

If-x-m-y-n-x-y-m-n-then-d-2-y-dx-2-




Question Number 207175 by MATHEMATICSAM last updated on 08/May/24
If x^m .y^n  = (x + y)^(m + n)  then (d^2 y/dx^2 ) = ?
$$\mathrm{If}\:{x}^{{m}} .{y}^{{n}} \:=\:\left({x}\:+\:{y}\right)^{{m}\:+\:{n}} \:\mathrm{then}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:? \\ $$
Answered by som(math1967) last updated on 08/May/24
lnx^m .y^n =ln(x+y)^(m+n)   mlnx+nlny=(m+n)ln(x+y)  (m/x) +(n/y)×(dy/dx)=((m+n)/(x+y))×(1+(dy/dx))  ((n/y) −((m+n)/(x+y)))(dy/dx)=((m+n)/(x+y))−(m/x)   ((nx−my)/(y(x+y)))×(dy/dx)=((nx−my)/(x(x+y)))   (dy/dx)=(y/x)   (d^2 y/dx^2 )=(((dy/dx)×x−y)/x^2 )   (d^2 y/dx^2 )=(((y/x)×x−y)/x^2 )=0
$${lnx}^{{m}} .{y}^{{n}} ={ln}\left({x}+{y}\right)^{{m}+{n}} \\ $$$${mlnx}+{nlny}=\left({m}+{n}\right){ln}\left({x}+{y}\right) \\ $$$$\frac{{m}}{{x}}\:+\frac{{n}}{{y}}×\frac{{dy}}{{dx}}=\frac{{m}+{n}}{{x}+{y}}×\left(\mathrm{1}+\frac{{dy}}{{dx}}\right) \\ $$$$\left(\frac{{n}}{{y}}\:−\frac{{m}+{n}}{{x}+{y}}\right)\frac{{dy}}{{dx}}=\frac{{m}+{n}}{{x}+{y}}−\frac{{m}}{{x}} \\ $$$$\:\frac{{nx}−{my}}{{y}\left({x}+{y}\right)}×\frac{{dy}}{{dx}}=\frac{{nx}−{my}}{{x}\left({x}+{y}\right)} \\ $$$$\:\frac{{dy}}{{dx}}=\frac{{y}}{{x}} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\frac{{dy}}{{dx}}×{x}−{y}}{{x}^{\mathrm{2}} } \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\frac{{y}}{{x}}×{x}−{y}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$
Answered by mr W last updated on 08/May/24
let y=tx  x^(m+n) t^n =(1+t)x^(m+n)   ⇒t^n =1+t ⇒t=constant  (dy/dx)=t  (d^2 y/dx^2 )=0
$${let}\:{y}={tx} \\ $$$${x}^{{m}+{n}} {t}^{{n}} =\left(\mathrm{1}+{t}\right){x}^{{m}+{n}} \\ $$$$\Rightarrow{t}^{{n}} =\mathrm{1}+{t}\:\Rightarrow{t}={constant} \\ $$$$\frac{{dy}}{{dx}}={t} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *