Menu Close

Let-x-cos-pi-9-Show-that-8x-3-6x-1-0-Deduce-x-is-not-rational-




Question Number 207194 by sniper237 last updated on 09/May/24
Let  x = cos(π/9)   Show that 8x^3 −6x−1=0  Deduce x is not  rational
Letx=cosπ9Showthat8x36x1=0Deducexisnotrational
Answered by Berbere last updated on 09/May/24
cos(3.(π/9))=cos((π/3))=(1/2)  cos(3a)=Re(e^(ia) )^3 =4cos^3 (a)−3cos(a)  ⇒(1/2)=4x^3 −3x⇒8x^3 −6x−1=0  suupose x=(p/q);gcd(p,q)=1;  ⇒8p^3 −6pq^2 −q^3 =0⇔p(8p^2 −6q^2 )=q^3   ⇒p∣q^3 ⇒(gcd(p,q)=1⇒gcd(p,q^3 )=1⇒p=1  ⇒8−6q^2 −q^3 =0⇒q^2 ∣8⇒q∈{1,2} x=1;x=(1/2) impossible  ⇒x∉IQ
cos(3.π9)=cos(π3)=12cos(3a)=Re(eia)3=4cos3(a)3cos(a)12=4x33x8x36x1=0suuposex=pq;gcd(p,q)=1;8p36pq2q3=0p(8p26q2)=q3pq3(gcd(p,q)=1gcd(p,q3)=1p=186q2q3=0q28q{1,2}x=1;x=12impossiblexIQ

Leave a Reply

Your email address will not be published. Required fields are marked *