Menu Close

x-3-2-x-4-x-5-6-x-2-2-Find-x-




Question Number 207206 by hardmath last updated on 09/May/24
(√(x−3 + 2 (√(x−4)))) − (√(x + 5−6 (√(x−2)))) = 2  Find:  x = ?
x3+2x4x+56x2=2Find:x=?
Answered by A5T last updated on 09/May/24
((√(x−4))+1)^2 =x−3+2(√(x−4))  ⇒(√(x−3+2(√(x−4))))=(√(x−4))+1  Question⇒(√(x−4))−(√(x+5−6(√(x−2))))=1  ⇒(√(x−4))=−4+3(√(x−2))⇒3(√(x−2))−(√(x−4))=4  ⇒u=(√(x−2));v=(√(x−4))  ⇒u^2 −v^2 =2; 3u−v=4⇒v=3u−4  ⇒u^2 −(3u−4)^2 =2⇒u^2 −9u^2 −16+24u=2  ⇒8u^2 −24u+18=0⇒4u^2 −12u+9=0  ⇒u=(3/2)⇒u^2 +2=x=(9/4)+2=((17)/4)  Substituting x=((17)/4) gives 1≠2,contradiction→←  Hence,no solution exists.
(x4+1)2=x3+2x4x3+2x4=x4+1Questionx4x+56x2=1x4=4+3x23x2x4=4u=x2;v=x4u2v2=2;3uv=4v=3u4u2(3u4)2=2u29u216+24u=28u224u+18=04u212u+9=0u=32u2+2=x=94+2=174Substitutingx=174gives12,contradiction→←Hence,nosolutionexists.
Commented by hardmath last updated on 09/May/24
thank you dear professor
thankyoudearprofessor
Commented by hardmath last updated on 10/May/24
thank you dear professor
thankyoudearprofessor
Answered by Frix last updated on 09/May/24
1. 0≤x−4  ⇒ 4≤x ⇒ 1≤(√(x−3+2(√(x−4))))  2. 0≤x+5−6(√(x−2))  ⇒ 2≤x≤13−6(√2)∨x≥13+6(√2)  =================  ⇒ 4≤x≤13−6(√2)∨x≥13+6(√2)  A. 4≤x≤13−6(√2)  ⇒ 1+(√3)−(√6)≤(√(x−3+2(√(x−4))))−(√(x+5−6(√(x−2))))≤1−(√3)+(√6)       [≈ .283≤lhs≤1.717]  B. 13+6(√2)≤x  ⇒ 4<(√(x−3+2(√(x−4))))−(√(x+5−6(√(x−2))))≤1+(√3)+(√6)       [≈ 4<lhs≤5.182]    ⇒ no solution
1.0x44x1x3+2x42.0x+56x22x1362x13+62=================4x1362x13+62A.4x13621+36x3+2x4x+56x213+6[.283lhs1.717]B.13+62x4<x3+2x4x+56x21+3+6[4<lhs5.182]nosolution
Commented by hardmath last updated on 10/May/24
thank you dear professor
thankyoudearprofessor

Leave a Reply

Your email address will not be published. Required fields are marked *